[1] Guo H, Zhang K, Jia X, et al. Effect of ITO film deposition conditions on ITO and CdS films of semiconductor solar cells [J]. Optik, 2017(7), 140: 322-330. doi:  10.1016/j.ijleo.2017.04.068
[2] Ferhati H, Djeffal F, Benhaya A. Optimized high-performance ITO/Ag/ITO multilayer transparent electrode deposited by RF magnetron sputtering [J]. Superlattices and Microstructures, 2019, 129(5): 176-184. doi:  10.1016/j.spmi.2019.03.027
[3] Rezaie M N, Manavizadeh N, Abadi E M N, et al. Comparison study of transparent RF-sputtered ITO/AZO and ITO/ZnO bilayers for near UV-OLED applications [J]. Applied Surface Science, 2017, 392(1): 549-556. doi:  10.1016/j.apsusc.2016.09.080
[4] Yu S, Li L, Lyu X, et al. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit [J]. Scientific Reports, 2016, 6(1): 1-8. doi:  10.1038/s41598-016-0001-8
[5] Zhu B L, Liu F, Li K, et al. Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere [J]. Ceramics International, 2017, 43(13): 10288-10298. doi:  10.1016/j.ceramint.2017.05.058
[6] Olson D H, Rost C M, Gaskins J T, et al. Size effects on the cross-plane thermal conductivity of transparent conducting indium tin oxide and fluorine tin oxide thin films [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 9(1): 51-57.
[7] Yu J, Gao Y, Wang L, et al. Anti-reductive properties of AZO/FTO bilayered transparent conducting films [J]. Surface Engineering, 2020, 36(1): 1-5. doi:  10.1080/02670844.2017.1418712
[8] Zhao B, Tang L, Wang B, et al. Optical and electrical characterization of gradient AZO thin film by magnetron sputtering [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(10): 10320-10324. doi:  10.1007/s10854-016-5115-z
[9] Tseng S F. Investigation of post-annealing aluminum-doped zinc oxide (AZO) thin films by a graphene-based heater [J]. Applied Surface Science, 2018, 448: 163-167. doi:  10.1016/j.apsusc.2018.04.036
[10] Sürücü Ö B. Characterization of GZO thin films fabricated by RF magnetron sputtering method and electrical properties of In/GZO/Si/Al diode [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(21): 19270-19278. doi:  10.1007/s10854-019-02286-w
[11] Tsay C Y, Hsu W T. Comparative studies on ultraviolet-light-derived photoresponse properties of ZnO, AZO, and GZO transparent semiconductor thin films [J]. Materials, 2017, 10(12): 1379. doi:  10.3390/ma10121379
[12] Gudmundsson J T. Physics and technology of magnetron sputtering discharges [J]. Plasma Sources Science and Technology, 2020, 29(11): 113001. doi:  10.1088/1361-6595/abb7bd
[13] Chang C H, Yang C B, Sung C C, et al. Structure and tribological behavior of (AlCrNbSiTiV) N film deposited using direct current magnetron sputtering and high power impulse magnetron sputtering [J]. Thin Solid Films, 2018, 668: 63-68. doi:  10.1016/j.tsf.2018.10.023
[14] Billiet J, Dams R, Hoste J. Multielement thin film standards for XRF analysis [J]. X-Ray Spectrometry, 1980, 9(4): 206-211. doi:  10.1002/xrs.1300090412
[15] Li F, Ge L, Tang Z, et al. Recent developments on XRF spectra evaluation [J]. Applied Spectroscopy Reviews, 2020, 55(4): 263-287. doi:  10.1080/05704928.2019.1580715
[16] Habazaki H, Matsuo T, Konno H, et al. Analysis of anodic films on Nb and NbNx by glow discharge optical emission spectroscopy [J]. Surface and Interface Analysis, 2003, 35(7): 618-622.
[17] Heikkilä I, Eggertson C, Randelius M, et al. First experiences on characterization of surface oxide films in powder particles by Glow Discharge Optical Emission Spectroscopy (GD-OES) [J]. Metal Powder Report, 2016, 71(4): 261-264. doi:  10.1016/j.mprp.2016.03.005
[18] Jolivet L, Leprince M, Moncayo S, et al. Review of the recent advances and applications of LIBS-based imaging [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 151: 41-53. doi:  10.1016/j.sab.2018.11.008
[19] Yang Y, Zhang L, Hao X, et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy [J]. Infrared and Laser Engineering, 2021, 50(5): 20210219. (in Chinese)
[20] Liu S, Gao Q, Dong L, et al. Picosecond laser ablation and depth profile of Cu (In, Ga) Se2 thin film layer [J]. Optics Communications, 2020, 462(5): 125369. doi:  10.1016/j.optcom.2020.125369
[21] Xiu J, Liu S, Fu S, et al. Rapid qualitative and quantitative analysis of elemental composition of Cu (In, Ga) Se 2 thin films using laser-induced breakdown spectroscopy [J]. Applied Optics, 2019, 58(4): 1040-1047. doi:  10.1364/AO.58.001040
[22] Liu S, Gao Q, Xiu J, et al. Rapid micro-analysis of Al-In-Sn-O thin film using laser induced breakdown spectroscopy with picosecond laser pulses [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 160(10): 105684. doi:  10.1016/j.sab.2019.105684
[23] Gao Q, Liu S, Wu J, et al. Rapid quantitative analysis and optical properties of ZCTO thin films based on picosecond laser-induced breakdown spectroscopy [J]. Applied Physics B: Lasers and Optics, 2021, 127(12): 161)-168. doi:  10.1007/s00340-021-07714-6
[24] Haacke G. New figure of merit for transparent conductors [J]. Journal of Applied Physics, 1976, 47(9): 4086-4089. doi:  10.1063/1.323240
[25] Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors [J]. Journal of Crystal Growth, 2001, 225(2-4): 110-113. doi:  10.1016/S0022-0248(01)00830-2
[26] Griem H R. Plasma Spectroscopy[M]. New York: McGraw-Hill, 1964.