[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 55(6): 447-449. doi:  10.1016/0030-4018(85)90151-8
[2] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser [J]. Optics Letters, 1991, 16(1): 42. doi:  10.1364/OL.16.000042
[3] Wang F Y, Zou T T, Xin W, et al. Control of the wettability of graphene oxide surface with femtosecond laser irradiation (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201064. (in Chinese) doi:  10.3788/IRLA20201064
[4] Yue D M, Sun H L, Yang X, et al. Annular drilling process and quality control neural network model of stainless steel micro-hole with femtosecond laser [J]. Infrared and Laser Engineering, 2021, 50(10): 20200446. (in Chinese) doi:  10.3788/IRLA20200446
[5] Zhang Y L, Tian Y, Wang H, et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation [J]. ACS Nano, 2019, 13(4): 4041-4048. doi:  10.1021/acsnano.8b08200
[6] Ma Z C, Hu X Y, Zhang Y L, et al. Smart compound eyes enable tunable imaging [J]. Advanced Functional Materials, 2019, 29(38): 1903340. doi:  10.1002/adfm.201903340
[7] Liu X Q, Yang S N, Yu L, et al. Rapid engraving of artificial compound eyes from curved sapphire substrate [J]. Advanced Functional Materials, 2019, 29(18): 1900037. doi:  10.1002/adfm.201900037
[8] Jiang H B, Zhang Y L, Liu Y, et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil [J]. Laser & Photonics Reviews, 2016, 10(3): 441-450.
[9] Lei S T, Zhao X, Yu X M, et al. Ultrafast laser applications in manufacturing processes: A state-of-the-art review [J]. Journal of Manufacturing Science and Engineering, 2020, 142(3): 031005. doi:  10.1115/1.4045969
[10] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids [J]. Applied Physics A, 1996, 63(2): 109-115. doi:  10.1007/BF01567637
[11] Eaton S M, Zhang H B, Herman P R. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate [J]. Optics Express, 2005, 13(12): 4708-4716. doi:  10.1364/OPEX.13.004708
[12] Eaton S M, Zhang H, Ng M L, et al. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides [J]. Optics Express, 2008, 16(13): 9443-9458. doi:  10.1364/OE.16.009443
[13] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication [J]. Applied Physics Reviews, 2014, 1(4): 041303. doi:  10.1063/1.4904320
[14] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser [J]. Optics Letters, 1996, 21(21): 1729-1731. doi:  10.1364/OL.21.001729
[15] Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials [J]. Optics Letters, 1996, 21(24): 2023-2025. doi:  10.1364/OL.21.002023
[16] Sugioka K, Cheng Y. Femtosecond Laser 3 D Micromachining for Microfluidic and Optofluidic Applications [M]//Springer Briefs in Applied and Technology. London: Springer, 2014: 24-25.
[17] Tan D F, Li Y, Qi F J, et al. Reduction in feature size of two-photon polymerization using SCR500 [J]. Applied Physics Letters, 2007, 90(7): 071106. doi:  10.1063/1.2535504
[18] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices [J]. Nature, 2001, 412(6848): 697-698. doi:  10.1038/35089130
[19] Sugioka K, Cheng Y, Midorikawa K. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture [J]. Applied Physics A-Materials Science & Processing, 2005, 81(1): 1-10.
[20] Straub M, Afshar M, Feili D, et al. Periodic nanostructures on Si(100) surfaces generated by high-repetition rate sub-15 fs pulsed near-infrared laser light [J]. Optics Letters, 2012, 37(2): 190-192. doi:  10.1364/OL.37.000190
[21] Li L J, Fourkas J T. Multiphoton polymerization [J]. Materials Today, 2007, 10(6): 30-37. doi:  10.1016/S1369-7021(07)70130-X
[22] Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing [J]. Nano Today, 2010, 5(5): 435-448. doi:  10.1016/j.nantod.2010.08.007
[23] Ye S, Cao Q, Wang Q S, et al. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation [J]. Scientific Reports, 2016, 6: 37591. doi:  10.1038/srep37591
[24] Shi X S, Li X, Jiang L, et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films [J]. Scientific Reports, 2015, 5: 17557. doi:  10.1038/srep17557
[25] Marchese S V, Baer C R E, Engqvist A G, et al. Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level [J]. Optics Express, 2008, 16(9): 6397-6407. doi:  10.1364/OE.16.006397
[26] Kleinbauer J, Eckert D, Weiler S, et al. 80 W ultrafast CPA-free disk laser [C]//Proceedings of SPIE, 2008, 6871 : 68711B.
[27] Yong J L, Chen F, Li M J, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces [J]. Journal of Materials Chemistry A, 2017, 5(48): 25249-25257. doi:  10.1039/C7TA07528F
[28] Lin J T, Yu S J, Ma Y G, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing [J]. Optics Express, 2012, 20(9): 10212-10217. doi:  https://doi.org/10.1364/OE.20.010212
[29] Xu H L, Sun H B. Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities [J]. Science China-Physics Mechanics & Astronomy, 2015, 58(11): 114202. doi:  https://doi.org/10.1007/s11433-015-5720-5
[30] Huang T Y, Huang H W, Jin D D, et al. Four-dimensional micro-building blocks [J]. Science Advances, 2020, 6(3): eaav8219. doi:  10.1126/sciadv.aav8219
[31] Lv C, Sun X C, Xia H, et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing [J]. Sensors and Actuators B-Chemical, 2018, 259: 736-744. doi:  10.1016/j.snb.2017.12.053
[32] Mills B, Grant-Jacob J A, Feinaeugle M, et al. Single-pulse multiphoton polymerization of complex structures using a digital multimirror device [J]. Optics Express, 2013, 21(12): 14853-14858. doi:  10.1364/OE.21.014853
[33] Mills B, Heath D J, Feinaeugle M, et al. Laser ablation via programmable image projection for submicron dimension machining in diamond [J]. Journal of Laser Applications, 2014, 26(4): 041501. doi:  10.2351/1.4893749
[34] Wang D, Wen C Y, Chang Y N, et al. Ultrafast laser-enabled 3D metal printing: A solution to fabricate arbitrary submicron metal structures [J]. Precision Engineering, 2018, 52: 106-111. doi:  https://doi.org/10.1016/j.precisioneng.2017.11.015
[35] Guo Y M, Wang Y, Hu Q L, et al. High-resolution femtosecond laser beam shaping via digital holography [J]. Optics Letters, 2019, 44(4): 987-990. doi:  10.1364/OL.44.000987
[36] Saha S K, Wang D, Nguyen V H, et al. Scalable submicrometer additive manufacturing [J]. Science, 2019, 366(6461): 105-109. doi:  10.1126/science.aax8760
[37] Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses [J]. Optics Letters, 2006, 31(11): 1705-1707. doi:  10.1364/OL.31.001705
[38] Zhang C C, Hu Y L, Du W Q, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels [J]. Scientific Reports, 2016, 6: 33281. doi:  10.1038/srep33281
[39] Xu B, Ji S Y, Pan D, et al. Hybrid femtosecond laser fabrication of a size-tunable microtrap chip with a high-trapping retention rate [J]. Optics Letters, 2020, 45(5): 1071-1074. doi:  10.1364/OL.386095
[40] Wang C W, Yang L, Hu Y L, et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects [J]. ACS Nano, 2019, 13(4): 4667-4676. doi:  10.1021/acsnano.9b00893
[41] Ji S Y, Yang L, Zhang C C, et al. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth [J]. Optics Letters, 2018, 43(15): 3514-3517. doi:  10.1364/OL.43.003514
[42] Xin C, Yang L, Li J W, et al. Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery [J]. Advanced Materials, 2019, 31(25): 1808226. doi:  10.1002/adma.201808226
[43] Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material [J]. Light: Science & Applications, 2017, 6: e17011.
[44] Chu W, Tan Y X, Wang P, et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization [J]. Advanced Materials Technologies, 2018, 3(5): 1700396. doi:  10.1002/admt.201700396
[45] Wang P, Chu W, Li W B, et al. Three-dimensional laser printing of macro-scale glass objects at a micro-scale resolution [J]. Micromachines, 2019, 10(9): 565. doi:  10.3390/mi10090565
[46] Lin Z J, Xu J, Song Y P, et al. Freeform microfluidic networks encapsulated in laser-printed 3D macroscale glass objects [J]. Advanced Materials Technologies, 2020, 5(2): 1900989. doi:  10.1002/admt.201900989
[47] Li B H, Jiang L, Li X W, et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femto-second laser shaping [J]. Advanced Optical Materials, 2018, 6(24): 1801021. doi:  10.1002/adom.201801021
[48] Jurkeviciute A, Klimaite G, Tamulevicius T, et al. Tailoring of silver nanoparticle size distributions in hydrogenated amorphous diamond-like carbon nanocomposite thin films by direct femtosecond laser interference patterning [J]. Advanced Engineering Materials, 2020, 22(3): 1900951. doi:  10.1002/adem.201900951
[49] Jia X, Jia T Q, Zhang S A, et al. Manipulation of cross-linked micro/nanopatterns on ZnO by adjusting the femtosecond-laser polarizations of four-beam interference [J]. Applied Physics A-Materials Science & Processing, 2014, 114(4): 1333-1338.
[50] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses [J]. Light: Science & Applications, 2018, 7: 85.
[51] Nagelberg S, Zarzar L D, Nicolas N, et al. Reconfigurable and responsive droplet-based compound micro-lenses [J]. Nature Communications, 2017, 8: 14673. doi:  10.1038/ncomms14673
[52] Thiele S, Arzenbacher K, Gissibl T, et al. 3D-printed eagle eye: Compound microlens system for foveated imaging [J]. Science Advances, 2017, 3(2): e1602655. doi:  10.1126/sciadv.1602655
[53] Su Y H, Qin T T, Xu B, et al. Patterned microlens processed using two-photon polymerization of femtosecond laser and its imaging test [J]. Optics and Precision Engineering, 2020, 28(12): 2629-2635. (in Chinese) doi:  10.37188/OPE.20202812.2629
[54] Sun Y L, Li Q, Sun S M, et al. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists [J]. Nature Communications, 2015, 6: 8612. doi:  10.1038/ncomms9612
[55] Yang Q, Tong S Y, Chen F, et al. Lens-on-lens microstructures [J]. Optics Letters, 2015, 40(22): 5359-5362. doi:  10.1364/OL.40.005359
[56] Sohn I B, Choi H K, Noh Y C, et al. Laser assisted fabrication of micro-lens array and characterization of their beam shaping property [J]. Applied Surface Science, 2019, 479: 375-385. doi:  10.1016/j.apsusc.2019.02.083
[57] Zhang H R, Yang F Y, Dong J J, et al. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation [J]. Nature Communications, 2016, 7: 13743. doi:  10.1038/ncomms13743
[58] Bauser H C, Bukowsky C R, Phelan M, et al. Photonic crystal waveguides for >90% light trapping efficiency in luminescent solar concentrators [J]. ACS Photonics, 2020, 7(8): 2122-2131. doi:  10.1021/acsphotonics.0c00593
[59] Li M X, Ling J W, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator [J]. Nature Communications, 2020, 11(1): 4123. doi:  10.1038/s41467-020-17950-7
[60] Fenzl C, Hirsch T, Wolfbeis O S. Photonic crystals for chemical sensing and biosensing [J]. Angewandte Chemie-International Edition, 2014, 53(13): 3318-3335. doi:  10.1002/anie.201307828
[61] Liu Z S, Zhou X Y, Jia X H, et al. Visible light perovskite-coated photonic crystal surface-emitter on SOI [J]. Semiconductor Science and Technology, 2020, 35(7): 075019. doi:  10.1088/1361-6641/ab8840
[62] Wei D Z, Wang C W, Wang H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal [J]. Nature Photonics, 2018, 12(10): 596-600. doi:  10.1038/s41566-018-0240-2
[63] Kalli K, Theodosiou A, Ioannou A, et al. Femtosecond laser processing of optical fibres for novel sensor development [C]//Proceedings of the 25 th International Conference on Optical Fibre Sensors (OFS), 2017: 10323.
[64] Ming X Y, Guo Q, Xue Z K, et al. A femtosecond laser-inscribed fine-core long-period grating with low temperature sensitivity [J]. Chinese Optics, 2020, 13(4): 737-744. (in Chinese) doi:  10.37188/CO.2020-0015
[65] Liu X Q, Cheng R, Zheng J X, et al. Wear-resistant blazed gratings fabricated by etching-assisted femtosecond laser lithography [J]. Journal of Lightwave Technology, 2021, 39(14): 4690-4694. doi:  10.1109/JLT.2021.3066976
[66] Hou X T, Xu X Y, Xu G Z, et al. Waveguide-coupled superconducting nanowire single-photon detectors based on femtosecond laser direct writing [J]. Optics Express, 2021, 29(5): 7746-7756. doi:  10.1364/OE.419724
[67] He J, He J, Xu X Z, et al. Single-mode helical Bragg grating waveguide created in a multimode coreless fiber by femtosecond laser direct writing [J]. Photonics Research, 2021, 9(10): 2052-2059. doi:  10.1364/PRJ.434719
[68] Song Y J, Zhang Y Q, Bernard P E, et al. Multiplexed volumetric bar-chart chip for point-of-care diagnostics [J]. Nature Communications, 2012, 3: 1283. doi:  10.1038/ncomms2292
[69] Liao Y, Song J X, Li E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing [J]. Lab on a Chip, 2012, 12(4): 746-749. doi:  10.1039/c2lc21015k
[70] Yalikun Y, Hosokawa Y, Iino T, et al. An all-glass 12 μm ultra-thin and flexible microfluidic chip fabricated by femtosecond laser processing [J]. Lab on a Chip, 2016, 16(13): 2427-2433. doi:  10.1039/C6LC00132G
[71] Roth G L, Esen C, Hellmann R. Femtosecond laser direct generation of 3 D-microfluidic channels inside bulk PMMA [J]. Optics Express, 2017, 25(15): 18442-18450. doi:  10.1364/OE.25.018442
[72] Xu B, Shi Y, Lao Z X, et al. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging [J]. Lab on a Chip, 2018, 18(3): 442-450. doi:  10.1039/C7LC01080J
[73] Elgohary A, Block E, Squier J, et al. Fabrication of sealed sapphire microfluidic devices using femtosecond laser micromachining [J]. Applied Optics, 2020, 59(30): 9285-9291. doi:  10.1364/AO.400184
[74] Bharadwaj V, Jedrkiewicz O, Hadden J P, et al. Femtosecond laser written photonic and microfluidic circuits in diamond [J]. Journal of Physics-Photonics, 2019, 1(2): 022001. doi:  10.1088/2515-7647/ab0c4e
[75] Zhang C Y, Liu H Y, Man W Q, et al. Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing [J]. Optics and Precision Engineering, 2017, 25(12): 3063-3069. (in Chinese) doi:  10.3788/OPE.20172512.3063
[76] Li C, Stoian R, Cheng G H. Laser-induced periodic surface structures with ultrashort laser pulse [J]. Chinese Optics, 2018, 11(1): 1-17. (in Chinese) doi:  10.3788/co.20181101.0001
[77] Lim H U, Kang J, Guo C L, et al. Manipulation of multiple periodic surface structures on metals induced by femtosecond lasers [J]. Applied Surface Science, 2018, 454: 327-333. doi:  10.1016/j.apsusc.2018.05.158
[78] Nivas J J J, Anoop K K, Bruzzese R, et al. Direct femtosecond laser surface structuring of crystalline silicon at 400 nm [J]. Applied Physics Letters, 2018, 112(12): 121601. doi:  10.1063/1.5011134
[79] Rebollar E, de Aldana J R V, Perez-Hernandez J A, et al. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films [J]. Applied Physics Letters, 2012, 100(4): 041106. doi:  10.1063/1.3679103
[80] Hohm S, Rohloff M, Rosenfeld A, et al. Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences [J]. Applied Physics A-Materials Science & Processing, 2013, 110(3): 553-557.
[81] Fraggelakis F, Stratakis E, Loukakos P A. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses [J]. Applied Surface Science, 2018, 444: 154-160. doi:  10.1016/j.apsusc.2018.02.258
[82] Borowiec A, Haugen H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses [J]. Applied Physics Letters, 2003, 82(25): 4462-4464. doi:  10.1063/1.1586457
[83] Miyaji G, Miyazaki K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses [J]. Optics Express, 2008, 16(20): 16265-16271. doi:  10.1364/OE.16.016265
[84] Bhardwaj V R, Simova E, Rajeev P P, et al. Optically produced arrays of planar nanostructures inside fused silica [J]. Physical Review Letters, 2006, 96(5): 057404. doi:  10.1103/PhysRevLett.96.057404
[85] Reif J, Costache F, Henyk M, et al. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics [J]. Applied Surface Science, 2002, 197: 891-895.
[86] Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking [J]. Optics Express, 2010, 18(3): 2913-2924. doi:  10.1364/OE.18.002913
[87] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses [J]. Applied Physics Letters, 1998, 73(12): 1673-1675. doi:  10.1063/1.122241
[88] Her T H, Finlay R J, Wu C, et al. Femtosecond laser-induced formation of spikes on silicon [J]. Applied Physics A-Materials Science & Processing, 2000, 70(4): 383-385.
[89] Vorobyev A Y, Guo C L. Direct creation of black silicon using femtosecond laser pulses [J]. Applied Surface Science, 2011, 257(16): 7291-7294. doi:  10.1016/j.apsusc.2011.03.106
[90] Yong J L, Chen F, Yang Q, et al. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing [J]. Advanced Materials Interfaces, 2017, 4(20): 1700552. doi:  10.1002/admi.201700552
[91] Soong H K, Malta J B. Femtosecond lasers in ophthalmology [J]. American Journal of Ophthalmology, 2009, 147(2): 189-197. doi:  10.1016/j.ajo.2008.08.026
[92] Juhasz E, Filkorn T, Kranitz K, et al. Analysis of planned and postoperatively measured flap thickness after LASIK using the lensx multifunctional femtosecond laser system [J]. Journal of Refractive Surgery, 2014, 30(9): 622-626. doi:  10.3928/1081597X-20140827-01
[93] Farsari M, Chichkov B N. Two-photon fabrication [J]. Nature Photonics, 2009, 3(8): 450-452. doi:  10.1038/nphoton.2009.131
[94] Ovsianikov A, Malinauskas M, Schlie S, et al. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications [J]. Acta Biomaterialia, 2011, 7(3): 967-974. doi:  10.1016/j.actbio.2010.10.023
[95] Tayalia P, Mendonca C R, Baldacchini T, et al. 3D cell-migration studies using two-photon engineered polymer scaffolds [J]. Advanced Materials, 2008, 20(23): 4494-4498. doi:  10.1002/adma.200801319