[1] Rogalski A. HgCdTe infrared detector material: History, status and outlook [J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336. doi:  10.1088/0034-4885/68/10/R01
[2] Yakovkin I N, Petrova N V. Band inversion and absence of surface states in IV – VI semiconductors [J]. Physics Letters A, 2021, 403: 127398. doi:  10.1016/j.physleta.2021.127398
[3] Hu W D, Li Q, Chen X S, et al. Recent progress on advanced infrared photodetectors [J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese) doi:  10.7498/aps.68.20190281
[4] Ye Z H, Li H H, Wang J D, et al. Recent hotspots and innovative trends of infrared photon detectors [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 15-39. (in Chinese)
[5] Hu W D, Ye Z H, Liao L, et al. 128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk [J]. Optics Letters, 2014, 39(17): 5184-5187. doi:  10.1364/OL.39.005184
[6] Chen J, Chen J, Li X, et al. High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared [J]. NPJ Quantum Materials, 2021, 6(1): 1-7. doi:  10.1038/s41535-020-00300-7
[7] Fadeev M A, Troshkin A O, Dubinov A A, et al. Mid-infrared stimulated emission in HgCdTe/CdHgTe quantum well heterostructures at room temperature [J]. Optical Engineering, 2020, 60(8): 082006.
[8] Hackiewicz K, Kopytko M, Gawron W. MOCVD-grown HgCdTe photodiodes optimized for HOT conditions and a wide IR range [J]. Sensors and Actuators A: Physical, 2020, 309: 112008. doi:  https://doi.org/10.1016/j.sna.2020.112008
[9] He J L, Wang P, Li Q, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design [J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2001-2007. doi:  10.1109/TED.2020.2980887
[10] Ismayilov N J, Rajabli A A. Large area CdxHg1−xTe photodiode with picosecond response time τRC [J]. Low Temperature Physics, 2022, 48(2): 161-164. doi:  10.1063/10.0009297
[11] Lei W. A review on the development of GaSb alternative substrates for the epitaxial growth of HgCdTe [J]. Journal of Nanoscience and Nanotechnology, 2018, 18(11): 7349-7354. doi:  10.1166/jnn.2018.16054
[12] Martyniuk P, Rogalski A, Krishna S. Interband quantum cascade infrared photodetectors: Current status and future trends [J]. Physical Review Applied, 2022, 17(2): 027001. doi:  10.1103/PhysRevApplied.17.027001
[13] Mynbaev K D, Bazhenov N L, Dvoretsky S A, et al. Photo-luminescence of molecular beam epitaxy-grown mercury cadmium telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si technologies [J]. Journal of Electronic Materials, 2018, 47(8): 4731-4736. doi:  10.1007/s11664-018-6364-9
[14] Nordin L, Muhowski A J, Wasserman D. High operating temperature plasmonic infrared detectors [J]. Applied Physics Letters, 2022, 120(10): 101103. doi:  10.1063/5.0077456
[15] Qiu X F, Zhang S X, Zhang J, et al. Microstructure and optical characterization of mid-wave HgCdTe grown by MBE under different conditions [J]. Crystals, 2021, 11(3): 296. doi:  10.3390/cryst11030296
[16] Vallone M, Goano M, Tibaldi A, et al. Quantum efficiency and crosstalk in subwavelength HgCdTe dual band infrared detectors [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2): 1-9. doi:  10.1109/JSTQE.2021.3056056
[17] Vallone M, Tibaldi A, Hanna S, et al. Plasmon-enhanced light absorption in mid-wavelength infrared HgCdTe detectors [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2): 1-10. doi:  10.1109/JSTQE.2021.3111780
[18] Voitsekhovskii A V, Nesmelov S N, Dzyadukh S M, et al. An experimental study of the dynamic resistance in surface leakage limited nBn structures based on HgCdTe grown by molecular beam epitaxy [J]. Journal of Electronic Materials, 2021, 50(8): 4599-4605. doi:  10.1007/s11664-021-09001-8
[19] Guo J X, Xie R Z, Wang P, et al. Infrared photodetectors for multidimensional optical information acquisition [J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 40-60. (in Chinese) doi:  10.11972/j.issn.1001-9014.2022.01.002
[20] Xie R Z, Li Q, Wang P, et al. Spatial description theory of narrow-band single-carrier avalanche photodetectors [J]. Optics Express, 2021, 29(11): 16432-16446. doi:  10.1364/OE.418110
[21] You C, Deng W, Liu M, et al. Design and performance study of hybrid Graphene/HgCdTe mid-infrared photodetector [J]. IEEE Sensors Journal, 2021, 21(23): 26708-26715. doi:  10.1109/JSEN.2021.3120554
[22] Zhang W T, Ye W C, Chen X, et al. Study of the spectral response for HgCdTe long-wavelength detectors with applied stress [J]. Optical and Quantum Electronics, 2022, 54(2): 1-12.
[23] Zhang W K, Lin J M, Chen H L, et al. Analysis injection area-dark current characteristics for mid-wavelength HgCdTe photodiodes [J]. Infrared Physics & Technology, 2018, 93: 70-76.
[24] Zholudev M S, Rumyantsev V V, Morozov S V. Calculation of discrete and resonant states of Coulomb acceptor in HgCdTe alloys [J]. Semiconductor Science and Technology, 2021, 37(2): 025003.
[25] Zholudev M S, Rumyantsev V V, Morozov S V. Calculation of the temperature dependence of the Coulomb-Acceptor state energy in a narrow-gap HgCdTe solid solution [J]. Semiconductors, 2022, 55(12): 907-913.
[26] Zhu L Q, Guo H J, Deng Z, et al. Temperature-dependent characteristics of HgCdTe mid-wave infrared e-avalanche photodiode [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2): 1-9. doi:  10.1109/JSTQE.2021.3121273
[27] Li Q, Xie R, Wang F, et al. SRH suppressed P-G-I design for very long-wavelength infrared HgCdTe photodiodes [J]. Optics Express, 2022, 30(10): 16509-16517. doi:  10.1364/OE.458419
[28] Haynes J R, Shockley W. Investigation of hole injection in transistor action [J]. Physical Review, 1949, 75(4): 691-691. doi:  10.1103/PhysRev.75.691
[29] Van Roosbroeck W. Injected current carrier transport in a semi-infinite semiconductor and the determination of lifetimes and surface recombination velocities [J]. Journal of Applied Physics, 1955, 26(4): 380-391. doi:  10.1063/1.1722002
[30] Marek J. Light-beam-induced current characterization of grain boundaries [J]. Journal of Applied Physics, 1984, 55(2): 318-326. doi:  10.1063/1.333047
[31] Raynaud C, Nguyen D-M, Dheilly N, et al. Optical beam induced current measurements: Principles and applications to SiC device characterization [J]. Physica Status Solidi A:Applied Research, 2009, 206(10): 2273-2283. doi:  10.1002/pssa.200825183
[32] Li Q, He T, Zhang K, et al. Direct mapping and characterization of the surface local field in InGaAs/InP avalanche photodetectors [J]. Infrared Physics & Technology, 2022, 123: 104162.
[33] Graham R, Yu D. Scanning photocurrent microscopy in semiconductor nanostructures [J]. Modern Physics Letters B, 2013, 27(25): 1330018. doi:  10.1142/S0217984913300184
[34] Baugher B W, Churchill H O, Yang Y, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide [J]. Nature Nanotechnology, 2014, 9(4): 262-267. doi:  10.1038/nnano.2014.25
[35] Qiu W C, Cheng X A, Wang R, et al. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe [J]. Journal of Applied Physics, 2014, 115(20): 204506. doi:  10.1063/1.4879316
[36] Musca C A, Redfern D A, Smith E P G, et al. Junction depth measurement in HgCdTe using laser beam induced current (LBIC) [J]. Journal of Electronic Materials, 1999, 28(6): 603-610. doi:  10.1007/s11664-999-0042-x
[37] Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1-7. doi:  10.1109/JSTQE.2013.2262188
[38] Hu W D, Chen X S, Ye Z H, et al. Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation [J]. Applied Physics Letters, 2012, 101(18): 181108. doi:  10.1063/1.4764903
[39] Qiu W C, Hu W D, Lin T, et al. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope [J]. Applied Physics Letters, 2014, 105(19): 191106. doi:  10.1063/1.4901529
[40] Gumenjuk-Sichevskaja J V, Sizov F F, Ovsyuk V N, et al. Charge transport in HgCdTe-based n+-p photodiodes [J]. Semiconductors, 2001, 35(7): 800-806. doi:  10.1134/1.1385716
[41] Polla D L, Reine M B, Jones C E. Deep level studies of Hg1−xCdxTe. II: Correlation with photodiode performance [J]. Journal of Applied Physics, 1981, 52(8): 5132-5138. doi:  10.1063/1.329412
[42] Jones C E, James K, Merz J, et al. Status of point defects in HgCdTe [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1985, 3(1): 131-137.
[43] Turinov V I. A study of deep levels in CdHgTe by analyzing the tunneling current of photodiodes [J]. Semiconductors, 2004, 38: 1092-1098. doi:  10.1134/1.1797492
[44] Dawar A L, Roy S, Mall R P, et al. Effect of laser irradiation on structural, electrical, and optical properties of p-mercury cadmium telluride [J]. Journal of Applied Physics, 1991, 70(7): 3516-3520. doi:  10.1063/1.349246
[45] Dawar A L, Roy S, Nath T, et al. Effect of laser annealing on electrical and optical properties of n-mercury cadmium telluride [J]. Journal of Applied Physics, 1991, 69(7): 3849-3852. doi:  10.1063/1.348440
[46] Zha F X, Li M S, Shao J, et al. Femtosecond laser-drilling-induced HgCdTe photodiodes [J]. Optics Letters, 2010, 35(7): 971-973. doi:  10.1364/OL.35.000971
[47] Zha F X, Zhou S M, Ma H L, et al. Laser drilling induced electrical type inversion in vacancy-doped p-type HgCdTe [J]. Applied Physics Letters, 2008, 93(15): 151113. doi:  10.1063/1.3001930
[48] Qiu W C, Hu W D. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors [J]. Science China Physics, Mechanics & Astronomy, 2015, 58: 1-13.
[49] Smith E P, Gleason J K, Pham L T, et al. Inductively coupled plasma etching of HgCdTe [J]. Journal of Electronic Materials, 2003, 32: 816-820. doi:  10.1007/s11664-003-0076-4
[50] Stoltz A J, Benson J D, Boyd P R, et al. The effect of electron cyclotron resonance plasma parameters on the aspect ratio of trenches in HgCdTe [J]. Journal of Electronic Materials, 2003, 32(7): 692-697. doi:  10.1007/s11664-003-0054-x
[51] Zhong F, Wang H, Wang Z, et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies [J]. Nano Research, 2020, 14(6): 1840-1862.
[52] He T, Wang Z, Zhong F, et al. Etching techniques in 2D materials [J]. Advanced Materials Technologies, 2019, 4(8): 1900064. doi:  10.1002/admt.201900064
[53] Rogalski A. Recent progress in infrared detector technologies [J]. Infrared Physics & Technology, 2011, 54(3): 136-154.
[54] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays [J]. Journal of Applied Physics, 2009, 105: 091101. doi:  10.1063/1.3099572
[55] Li Y T, Hu W D, Ye Z H, et al. Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays [J]. Optics Letters, 2017, 42(7): 1325-1328. doi:  10.1364/OL.42.001325
[56] Li Q, Wang F, Wang P, et al. Enhanced performance of HgCdTe midwavelength infrared electron avalanche photodetectors with guard ring designs [J]. IEEE Transactions on Electron Devices, 2020, 67(2): 542-546. doi:  10.1109/TED.2019.2958105
[57] He J L, Li Q, Wang P, et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode [J]. Optics Express, 2020, 28(22): 33556-33563. doi:  10.1364/OE.408526
[58] Singh A, Shukla A K, Pal R. Performance of graded bandgap HgCdTe avalanche photodiode [J]. IEEE Transactions on Electron Devices, 2017, 64(3): 1146-1152. doi:  10.1109/TED.2017.2650412
[59] Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: A vision for the near future [J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595. doi:  10.1007/s11664-016-4566-6
[60] Ge H N, Xie R Z, Chen Y F, et al. Skin effect photon-trapping enhancement in infrared photodiodes [J]. Optics Express, 2021, 29(15): 22823-22837. doi:  10.1364/OE.427714