[1] Chai G, Huang L, Qiao L, et al. Effect of the on-board residual magnetism on internal sensors [J]. Chinese Optics, 2019, 12(3): 515-525. (in Chinese) doi:  10.3788/co.20191203.0515
[2] Kominis I, Kornack T, Romalis M, et al. A subfemotesla multichannel atomic magnetometer [J]. Nature, 2003, 422: 596-599. doi:  10.1038/nature01484
[3] Wang F, Niu S, Yue C. et al. Design of attitude control system for ASTRU microsatellite [J]. Optics and Precision Engineering, 2020, 28(10): 2192-2202. (in Chinese) doi:  10.37188/OPE.20202810.2192
[4] Seltzer S. Developments in alkali-metal atomic magneto-metry[D]. Princeton: Princeton University, 2008.
[5] Romalis M, Dang H, Mallof A. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer [J]. Applied Physics Letter, 2010, 97(15): 151110. doi:  10.1063/1.3491215
[6] Wei K, Zhao T, Fang X J, et al. In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts [J]. Optics Express, 2019, 27(11): 16169-16183. doi:  10.1364/OE.27.016169
[7] Knappe S, Schwindt P, Gerginov V, et al. Microfabricated atomic clocks and magnetometers [J]. Journal of Optics A: Pure and Applied Optics, 2007, 8(7): 318-322.
[8] Kornack T, Smullin S, Romalis M, et al. A low-noise ferrite magnetic shield [J]. Applied Physics Letters, 2007, 90(22): 223501. doi:  10.1063/1.2737357
[9] Fan W, Quan W, Zhang W, et al. Analysis on the magnetic field response for nuclear spin co-magnetometer operated in spin-exchange relaxation-free regime [J]. IEEE Access, 2019, 7: 28674-28580.
[10] Wang Y, Liang M. Research on the spin-exchange-relaxation-free atomic magnetometer based on Herriott multipass cell [J]. Chinese Journal of Scientific Instrument, 2020, 41(6): 43-49. (in Chinese)
[11] Sheng D, Li S, Dural N, et al. Sub-femtotesla scalar atomic magnetometer using multipass cell [J]. Physical Review Letters, 2013, 110(16): 160802. doi:  10.1103/PhysRevLett.110.160802
[12] Kornack T. A test of CPT and Lorentz symmetry using a K-3He co-magnetometer[D]. Princeton: Princeton University, 2005.
[13] Xu G, Zhang Y, Jiang Q, et al. Temperature control of vapor cell based on the light absorption of nuclear magnetic resonance gyroscope [J]. Infrared and Laser Engineering, 2019, 48(S1): S106003. (in Chinese)
[14] Ma G, Zhang J, Zhang H, et al. Resonant mode of Fabry-Perot microcavity regulated by metal surface platforms [J]. Chinese Optics, 2019, 12(3): 651-664.
[15] Huang Y, Ma C, Hao Y, et al. Study on the lasing and thermal characteristic of square-FP coupled cavity semiconductor laser [J]. Chinese Journal of Lasers, 2020, 47(7): 0701017. (in Chinese)
[16] Chen Q, Zhao H, Zhang W. External oil cavity coupled with EFPI partial discharge ultrasonic detection sensor [J]. Optics and Precision Engineering, 2020, 28(7): 1471-1479. (in Chinese) doi:  10.37188/OPE.20202807.1471
[17] Ning F, Tan R, Wang Y, et al. Investigation on threshold characteristic of laser-diode and end-pumped potassium vapor laser [J]. Infrared and Laser Engineering, 2019, 48(S1): S105002 . (in Chinese)
[18] 吕百达. 激光光学: 激光束的传输变换和光束质量控制[M]. 成都: 四川大学出版社, 1992: 6-13.

Lv B. Laser Optics: Laser Beam Propagation and Beam Quality Control[M]. Chengdu: Sichuan University Press, 1992: 6-13. (in Chinese)