[1] Meinzer N, Barnes W L, Hooper IR. Plasmonic meta-atoms and metasurfaces [J]. Nature Photonics, 2014, 8: 889-898. doi:  10.1038/nphoton.2014.247
[2] Smith D R, Pendry J B, Wiltshire M C. Metamaterials and negative refractive index [J]. Science, 2004, 305(5685): 788-792. doi:  10.1126/science.1096796
[3] Plum E, Zhou J, Dong J. Metamaterial with negative index due to chirality [J]. Physical Review B, 2009, 79: 035407. doi:  10.1103/PhysRevB.79.035407
[4] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Letters, 2014, 14: 1394-1399. doi:  10.1021/nl4044482
[5] Yin X, Ye Z, Rho J, et al. Photonic spin hall effect at metasurfaces [J]. Science, 2013, 339: 1405-1407. doi:  10.1126/science.1231758
[6] Ren H, Briere G, Fang X, et al. Metasurface orbital angular momentum holography [J]. Nature Communications, 2019, 10: 2986. doi:  10.1038/s41467-019-11030-1
[7] Arbabi E, Kamali S, Arbabi A, et al. Vectorial holograms with a dielectric metasurface: Ultimate polarization pattern generation [J]. ACS Photonics, 2019, 6: 2712-2718. doi:  10.1021/acsphotonics.9b00678
[8] Arbabi E, Kamali S, Arbabi A, et al. Full-Stokes imaging polarimetry using dielectric metasurfaces [J]. ACS Photonics, 2019, 5: 3132-3140.
[9] Yang Z, Wang Z, Wang Y, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling [J]. Nature Communications, 2018, 9: 4607. doi:  10.1038/s41467-018-07056-6
[10] Mueller J, Rubin N, Devlin R, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization [J]. Physical Review Letters, 2017, 118(11): 113901. doi:  10.1103/PhysRevLett.118.113901
[11] Yu N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[12] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces [J]. Optica, 2017, 4: 139-52. doi:  10.1364/OPTICA.4.000139
[13] Khorasaninejad M, Chen W, Devlin R, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352(6290): 1190-1194. doi:  10.1126/science.aaf6644
[14] Liu W, Li Z, Cheng H, et al. Metasurface enabled wide-angle Fourier lens [J]. Advanced Materials, 2018, 30: 1706368. doi:  10.1002/adma.201706368
[15] Guo Q, Shi Z, Huang Y, et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders [J]. Proceedings of the National Academy of Sciences, 2019, 116: 22959-22965. doi:  10.1073/pnas.1912154116
[16] Safaei A, Vazquez-Guardado A, Franklin D, et al. High-effciency broadband mid-infrared flat lens [J]. Advanced Optical Materials, 2018, 6: 1800216. doi:  10.1002/adom.201800216
[17] Chen W, Zhu A, Capasso F. Flat optics with dispersion-engineered metasurfaces [J]. Nature Review Materials, 2020, 5: 604-620. doi:  10.1038/s41578-020-0203-3
[18] Ou K, Yu F, Li G, et al. Mid-infrared polarization-controlled broadband achromatic metadevice [J]. Science Advances, 2020, 6(37): eabc0711. doi:  10.1126/sciadv.abc0711
[19] Deng Z, Li G. Metasurface optical holography [J]. Materials Today Physics, 2017, 16: 32.
[20] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission [J]. Nature Nanotechnology, 2015, 10: 937-943. doi:  10.1038/nnano.2015.186
[21] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Letters, 2012, 12: 6223-6229. doi:  10.1021/nl3032668
[22] Decker M, Staude I, Falkner M, et al. High efficiency dielectric Huygens’ surfaces [J]. Advanced Optical Materials, 2015, 3: 813-820. doi:  10.1002/adom.201400584
[23] Kamali S, Arbabi A, Arbabi E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces [J]. Nature Communications, 2016, 7: 11618. doi:  10.1038/ncomms11618
[24] Deng Z L, Deng J, Zhuang X, et al. Facile metagrating holograms with broadband and extreme angle tolerance [J]. Light: Science & Applications, 2018, 7: 78.
[25] Decker M, Chen W, Nobis T, et al. Imaging performance of polarization-insensitive metalenses [J]. ACS Photonics, 2019, 6: 1493-1499. doi:  10.1021/acsphotonics.9b00221
[26] Paniagua-Domínguez R, Yu Y, Khaidarov E, et al. A metalens with near-unity numerical aperture [J]. Nano Letters, 2018, 18: 2124-2132. doi:  10.1021/acs.nanolett.8b00368
[27] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements [J]. Science, 2014, 345(6194): 298-302. doi:  10.1126/science.1253213
[28] Arbabi A, Horie Y, Ball A, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays [J]. Nature Communications, 2015, 6: 7069. doi:  10.1038/ncomms8069
[29] Zuo H J, Choi D, Gai X, et al. High-effciency all-dielectric metalenses for mid-infrared imaging [J]. Advanced Optical Materials, 2017, 5: 1700585. doi:  10.1002/adom.201700585
[30] Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics [J]. Nature Communications, 2019, 9: 1481.
[31] Wang S, Wu P, Su V, et al. Broadband achromatic optical metasurface devices [J]. Nature Communications, 2017, 8: 187. doi:  10.1038/s41467-017-00166-7
[32] Wang S, Wu P, Su V, et al. A broadband achromatic metalens in the visible [J]. Nature Nanotechnology, 2018, 13: 227-232. doi:  10.1038/s41565-017-0052-4
[33] Chen W, Zhu A, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology, 2018, 13: 220-226. doi:  10.1038/s41565-017-0034-6
[34] Fan Z, Qiu H, Zhang H, et al. A broadband achromatic metalens array for integral imaging in the visible [J]. Light: Science & Applications, 2019, 8: 67.
[35] Shrestha S, Overvig A, Lu M, et al. Broadband achromatic dielectric metalenses [J]. Light: Science & Applications, 2018, 7: 85.
[36] Ndao A, Hsu L, Ha J, et al. Octave bandwidth photonic fishnet-achromatic-metalens [J]. Nature Communications, 2020, 11: 3205. doi:  10.1038/s41467-020-17015-9