[1] Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 100-112. doi:  10.1016/j.isprsjprs.2005.12.001
[2] Mallet C, Bretar F. Full-waveform topographic lidar: State-of-the-art [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 1-16. doi:  10.1016/j.isprsjprs.2008.09.007
[3] Shi J, Menenti M, Lindenbergh R. Parameterization of surface roughness based on ICESat/GLAS full waveforms: A case study on the Tibetan Plateau [J]. Journal of Hydrometeorology, 2013, 14(4): 1278-1292. doi:  10.1175/JHM-D-12-0130.1
[4] Bye I J, North P R J, Los S O, et al. Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model [J]. Remote Sensing of Environment, 2017, 188: 177-189. doi:  10.1016/j.rse.2016.10.048
[5] Yang Chenchen, Xie Junfeng, Han Baomin, et al. Correlation analysis between ICESat/GLAS altimetry accuracy and echo waveform [J]. Applied Laser, 2020, 40(2): 9. (in Chinese)
[6] Hermosilla T, Ruiz L A, Kazakova A N, et al. Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data [J]. International Journal of Wildland Fire, 2013, 23(2): 224-233.
[7] Wang X, Cheng X, Gong P, et al. Earth science applications of ICESat/GLAS: A review [J]. International Journal of Remote Sensing, 2011, 32(23): 8837-8864. doi:  10.1080/01431161.2010.547533
[8] Mongus D, Žalik B. Parameter-free ground filtering of LiDAR data for automatic DTM generation [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 1-12. doi:  10.1016/j.isprsjprs.2011.10.002
[9] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1989-1996. doi:  10.1109/36.851780
[10] Qin Y, Vu T T, Ban Y. Toward an optimal algorithm for LiDAR waveform decomposition [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 9(3): 482-486.
[11] Zhu J, Zhang Z, Hu X, et al. Analysis and application of LiDAR waveform data using a progressive waveform decomposition method [J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, W12(5): 31-36.
[12] Jutzi B, Stilla U. Range determination with waveform recording laser systems using a Wiener filter [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 61(2): 95-107.
[13] Xie Junfeng, Yang Chenchen, Mei Yongkang, et al. Full waveform decomposition of spaceborne laser based on genetic algorithm [J]. Infrared and Laser Engineering, 2020, 49(11): 20200945. (in Chinese)
[14] Miller S D, Stephens G L. Multiple scattering effects in the lidar pulse stretching problem [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D18): 22205-22219. doi:  10.1029/1999JD900481
[15] Zhang Z, Xie H, Tong X, et al. A combined deconvolution and Gaussian decomposition approach for overlapped peak position extraction from large-footprint satellite laser altimeter waveforms [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, PP(99): 1-1.
[16] Zhou T, Popescu S C, Krause K, et al. Gold – A novel deconvolution algorithm with optimization for waveform LiDAR processing [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129(1): 131-150.
[17] Miroslav Morháč, Vladislav Matoušek. High-resolution boosted deconvolution of spectroscopic data [J]. Journal of Computational & Applied Mathematics, 2011, 235(6): 1629-1640.
[18] Zhao Quanhua, Chen Weiduo, Wang Yu, et al. Variable component waveform decomposition of partial normal full wave lidar data [J]. Optics and Precision Engineering, 2018, 26(1): 161-171. (in Chinese)
[19] 李勇, 范承玉, 时东锋. 基于加速正则化RL算法的大气湍流退化图像盲复原方法[J]. 大气与环境光学学报, 2011, 6(5): 9.

Li Yong, fan Chengyu, Shi Dongfeng. Blind restoration method of atmospheric turbulence degraded image based on accelerated regularization RL algorithm [J] Journal of Atmospheric and Environmental Optics, 2011, 6 (5): 342-350. (in Chinese)
[20] Morháč M. Deconvolution methods and their applications in the analysis of γ-ray spectra [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559(1): 119-123.
[21] Luo Min, Shi Yan, Zhou Hui, et al. Lidar pulse waveform decomposition based on variable component parameter random sampling [J]. Infrared and Laser Engineering, 2019, 48(10): 1005009. (in Chinese)
[22] Popescu S C, Zhao K, Neuenschwander A, et al. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level [J]. Remote Sensing of Environment, 2011, 115(11): 2786-2797. doi:  10.1016/j.rse.2011.01.026
[23] Hudnut K W, Brooks B A, Scharer K, et al. Airborne lidar and electro‐optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California [J]. Seismological Research Letters, 2020, 91(4): 2096-2107. doi:  10.1785/0220190338
[24] Hancock S, Armston J, Hofton M, et al. The GEDI simulator: A large‐footprint waveform lidar simulator for calibration and validation of spaceborne missions [J]. Earth and Space Science, 2019, 6(2): 294-310. doi:  10.1029/2018EA000506
[25] Liu Ren, Xie Junfeng, Mo Fan, et al. Simulation of echo waveform of spaceborne laser altimeter based on fine terrain [J]. Acta Photonica Sinica, 2018, 47(11): 1128004. (in Chinese)