[1] Rick H, Brian F A, Richard M M, et al. Three-dimensional laser radar with APD arrays [C]//Proceedings of SPIE, 2001, 4377: 106-117.
[2] Pawlikowska A M, Halimi A, Lamb R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range [J]. Optics Express, 2017, 25(10): 11919-11931. doi:  10.1364/OE.25.011919
[3] Gariepy G, Krstajić N, Henderson R, et al. Single-photon sensitive light-in-fight imaging [J]. Nature Communications, 2015, 6(1): 6021. doi:  10.1038/ncomms7021
[4] Gariepy G, Tonolini F, Henderson R, et al. Detection and tracking of moving objects hidden from view [J]. Nature Photonics, 2016, 10(1): 23-26. doi:  10.1038/nphoton.2015.234
[5] Aull B F, Loomis A H, Young D J, et al. Geiger-mode avalanche photodiodes for three-dimensional imaging [J]. Lincoln Laboratory Journal, 2002, 13(2): 335-349.
[6] Li Z P, Huang X, Jiang P Y, et al. Super-resolution single-photon imaging at 8.2 kilometers [J]. Opt Express, 2020, 28(3): 4076-4087.
[7] Tachella J, Altmann Y, Mellado N, et al. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers [J]. Nature Communications, 2019, 10(1): 4984. doi:  10.1038/s41467-018-07882-8
[8] Liu B, Yu Y, Chen Z, et al. True random coded photon counting Lidar [J]. Opto-Electronic Advances, 2020, 3(2): 190044.
[9] Sun W, Hu Y, MacDonnell D G, et al. Technique to separate lidar signal and sunlight [J]. Optics Express, 2016, 24(12): 12949-12954. doi:  10.1364/OE.24.012949
[10] O'Connor D. Time-correlated Single Photon Counting [M]. NewYork: Academic Press, 2012.
[11] Qiansong C, Chengwei Y, Zhiwen P. A brief introduction on development of laser Time-of-Flight distance measurement technology [J]. Laser & Infrared, 2002, 32(1): 7-10. (in Chinese)
[12] Bo L, Shuo J, Yang Y, et al. Macro/sub-pulse coded photon counting LiDAR [J]. Opto-Electronic Engineering, 2020, 47(10): 200265. (in Chinese)
[13] Fouche D G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors [J]. Applied Optics, 2003, 42(27): 5388-5398. doi:  10.1364/AO.42.005388
[14] Gatt P, Johnson S, Nichols T. Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics [J]. Applied Optics, 2009, 48(17): 3261-3276. doi:  10.1364/AO.48.003261
[15] Chen Z, Liu B, Guo G. Adaptive single photon detection under fluctuating background noise [J]. Optics Express, 2020, 28(20): 30199-30209. doi:  10.1364/OE.404681
[16] Abbot R I, Shelus P J, Mulholland J D, et al. Laser observations of the Moon: Identification and construction of normal points for 1969-1971 [J]. The Astronomical Journal, 1973, 78: 784. doi:  10.1086/111484
[17] Wang S, Guo S, Zhang P. Mobile laser ranging cooperative target [C]//SPIE, 2021, 11763: 11763AE.
[18] Xue L, Li Z, Zhang L, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength [J]. Optics Letters, 2016, 41(16): 3848-3851. doi:  10.1364/OL.41.003848
[19] Li Z P, Huang X, Cao Y, et al. Single-photon computational 3D imaging at 45 km [J]. Photonics Research, 2020, 8(9): 1532-1540. doi:  10.1364/PRJ.390091
[20] Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km [J]. Optica, 2021, 8(3): 344-349. doi:  10.1364/OPTICA.408657
[21] Massa J S, Wallace A M, Buller G S, et al. Laser depth measurement based on time-correlated single-photon counting [J]. Optics Letters, 1997, 22(8): 543-545. doi:  10.1364/OL.22.000543
[22] Albota M A, Aull B F, Fouche D G, et al. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays [J]. Lincoln Laboratory Journal, 2002, 13(2): 351-370.
[23] Schultz K I, Kelly M W, Baker J J, et al. Digital-pixel focal plane array technology [J]. Lincoln Laboratory Journal, 2014, 20(2): 36-51.
[24] Hadfield R H. Single-photon detectors for optical quantum information applications [J]. Nature Photonics, 2009, 3(12): 696-705. doi:  10.1038/nphoton.2009.230
[25] Gundacker S, Heering A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector [J]. Physics in Medicine & Biology, 2020, 65(17): 17TR01.
[26] Yu Y, Wang C, Shi H, et al. A review of quenching circuit design based on Geiger-mode APD [C]//2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018: 28-33.
[27] Boisvert J, Sudharsanan R, Yuan P, et al. Development of single photon counting sensors operating at short wavelength infrared wavelengths [J]. Quantum Sensing and Nanophotonic Devices VI, 2009, 7222: 418-425.
[28] Warburton R E, McCarthy A, Wallace A M, et al. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength [J]. Optics Letters, 2007, 32(15): 2266-2268. doi:  10.1364/OL.32.002266
[29] Holzman I, Ivry Y. Superconducting nanowires for single‐photon detection: Progress, challenges, and opportunities [J]. Advanced Quantum Technologies, 2019, 2(3-4): 1800058. doi:  10.1002/qute.201800058
[30] Korzh B, Zhao Q Y, Allmaras J P, et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector [J]. Nature Photonics, 2020, 14(4): 250-255. doi:  10.1038/s41566-020-0589-x
[31] You L. Superconducting nanowire single-photon detectors for quantum information [J]. Nanophotonics, 2020, 9(9): 2673-2692. doi:  10.1515/nanoph-2020-0186
[32] Piemonte C, Gola A. Overview on the main parameters and technology of modern silicon photomultipliers [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 2-15. doi:  10.1016/j.nima.2018.11.119
[33] Villa F, Severini F, Madonini F, et al. SPADs and SiPMs arrays for long-range high-speed light detection and ranging (LiDAR) [J]. Sensors, 2021, 21(11): 3839. doi:  10.3390/s21113839
[34] Singh A, Srivastav V, Pal R. HgCdTe avalanche photodiodes: A review [J]. Optics & Laser Technology, 2011, 43(7): 1358-1370.
[35] Rothman J. Physics and limitations of HgCdTe APDs: A review [J]. Journal of Electronic Materials, 2018, 47(10): 5657-5665. doi:  10.1007/s11664-018-6475-3
[36] Aull B, Schuette D, Young D, et al. A study of crosstalk in a photon counting imager based on silicon geiger-mode avalanche photodiodes [J]. IEEE Sensors Journal, 2015, 15: 2123-2132. doi:  10.1109/JSEN.2014.2368456
[37] Marino R M, Davis W R, Rich G C, et al. High-resolution 3D imaging laser radar flight test experiments [C]//Proceedings of SPIE, 2005, 5791: 138-151.
[38] McGill M, Markus T, Scott V S, et al. The multiple altimeter beam experimental lidar (MABEL): An airborne simulator for the ICESat-2 mission [J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 345-352. doi:  10.1175/JTECH-D-12-00076.1
[39] Markus T, Neumann T, Martino A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation [J]. Remote Sensing of Environment, 2017, 190: 260-273. doi:  10.1016/j.rse.2016.12.029
[40] Anthony J M, Thomas A N, Nathan T K, et al. ICESat-2 mission overview and early performance [C]//Sensors, Systems, and Next-Generation Satellites XXIII, SPIE, 2019,11151: 111510C.
[41] Du B, Pang C, Wu D, et al. High-speed photon-counting laser ranging for broad range of distances [J]. Scientific Reports, 2018, 8(1): 4198. doi:  10.1038/s41598-018-22675-1
[42] Du B, Wang Y, Wu E, et al. Laser communication based on a multi-channel single-photon detector [J]. Optics Communications, 2018, 426: 89-93. doi:  10.1016/j.optcom.2018.05.039
[43] Shen G Y, Zheng T X, Du B C, et al. Near-range large field-of-view three-dimensional photon-counting imaging with a single-pixel Si-avalanche photodiode [J]. Chinese Physics Letters, 2018, 35(11): 114204. doi:  10.1088/0256-307X/35/11/114204
[44] Zheng T, Shen G, Li Z, et al. Frequency-multiplexing photon-counting multi-beam LiDAR [J]. Photonics Research, 2019, 7(12): 1381-1385. doi:  10.1364/PRJ.7.001381
[45] Li Yuqiang, Li Rongwang, Li Zhulian L, et al. Application research on space debris laser ranging [J]. Infrared and Laser Engineering, 2015, 44(11): 3324-3329. (in Chinese)
[46] Li Yuqiang, Fu Honglin F, Li Rongwang, et al. Research and experiment of lunar laser ranging in Yunnan Observatories [J]. Chinese Journal of Lasers, 2019, 46(1): 0104004. (in Chinese)
[47] Shi Chenglong, Liu Jiqiao, Bi Decang, et al. Errors analysis of dioxide carbon concentrations measurement by airborne lidar [J]. Infrared and Laser Engineering, 2016, 45(5): 0530001. (in Chinese) doi:  10.3788/irla201645.0530001
[48] Hu Shanjiang, He Yan, Tao Bangyi, et al. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry [J]. Infrared and Laser Engineering, 2019, 48(11): 1113004. (in Chinese) doi:  10.3788/IRLA201948.1113004
[49] Zhang Yang, Huang Weidong, Dong Changzhe, et al. Research on the development of the detection satellite technology in oceanographic lidar [J]. Infrared and Laser Engineering, 2020, 49(11): 20201045. (in Chinese) doi:  10.3788/IRLA20201045
[50] Wang Zijun, Zhang Yang, Liu Dong, et al. Research on the development of detection satellite technology in the novel multi-beam land and ocean lidar [J]. Infrared and Laser Engineering, 2021, 50(7): 20211041. (in Chinese) doi:  10.3788/IRLA20211041
[51] Zhang Xiaoyu, Wang Fengxiang, Guo Ying, et al. Research on linear array scanning lidar and photon signal processing technology based on InGaAs single-photon detector [DB/OL]. Infrared and Laser Engineering, (2022-09-13) [2022-11-16]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=HWYJ20220830000&uniplatform=NZKPT&v=Npvk7mSHQxcJG_0aXB4tnMxJvGi4UXikjLeVLd72e5WcfsO33hihyoukYFw_Soel.
[52] Zheng X, Ding Y, Huang G, et al. Study of high speed quenching circuits in photon counting imaging lidar system [C]//AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology, Proceedings of SPIE, 2015, 9674: 96741N.
[53] Zhang Hehui, Ding Yuxing, Huang Genghua. Photon counting laser bathymetry system [J]. Infrared and Laser Engineering, 2019, 48(1): 0106002. (in Chinese) doi:  10.3788/IRLA201948.0106002
[54] Guo Jingjing, Fei Xiaoyan, Ge Peng, et al. High-resolution three-dimensional imaging based on all-fiber photon-counting Lidar system [J]. Infrared and Laser Engineering, 2021, 50(7): 20210162. (in Chinese) doi:  10.3788/IRLA20210162
[55] Zhu J, Chen Y, Yan Z, et al. Rlationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter [J]. Chinese Optics Letters, 2008, 6(6): 449-453. doi:  10.3788/COL20080606.0449
[56] Liu L, Zheng J, Ruan Z, et al. Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties [J]. Journal of Meteorological Research, 2015, 29(4): 546-561. doi:  10.1007/s13351-015-4208-6
[57] Yu Y, Liu B, Chen Z. Analyzing the performance of pseudo-random single photon counting ranging lidar [J]. Applied Optics, 2018, 57(27): 7733-7739. doi:  10.1364/AO.57.007733
[58] Li Z, Liu B, Wang H, et al. Advancement on target ranging and tracking by single-point photon counting lidar [J]. Optics Express, 2022, 30(17): 29907-29922. doi:  10.1364/OE.464070
[59] Chen Z, Liu B, Guo G, et al. Single photon imaging with multi-scale time resolution [J]. Optics Express, 2022, 30(10): 15895-15904.
[60] Chen Z, Wang H, Yu Y, et al. Single photon imaging based on a photon driven sparse sampling [J]. Optics Express, 2022, 30(8): 12521-12532.
[61] Hua K, Liu B, Chen Z, et al. Fast photon-counting imaging with low acquisition time method [J]. IEEE Photonics Journal, 2021, 13(3): 7800312.
[62] Li Z, Liu B, Wang H, et al. Target tracking and ranging based on single photon detection [J]. Photonics, 2021, 8(7): 278.
[63] Hua Kangjian, Liu Bo, Fang Liang, et al. Detection efficiency for underwater coaxial photon-counting lidar [J]. Appl Opt, 2020, 59(9): 2797-2809.
[64] Hua K, Liu B, Chen Z, et al. Efficient and noise robust photon-counting imaging with first signal photon unit method [J]. Photonics, 2021, 8(6): 229. doi:  10.3390/photonics8060229
[65] Miao Zhenhua, Zhao Baosheng, Zhang Xinghua, et al. A single photon imaging system based on wedge and strip anodes [J]. Chinese Physics Letters, 2008, 25(7): 2698-2701. doi:  10.1088/0256-307X/25/7/101
[66] Yan Qiurong, Zhao Baosheng, Liu Yongan, et al. Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout [J]. Chinese Physics C, 2011, 35(4): 368. doi:  10.1088/1674-1137/35/4/009
[67] Yan Q R, Wang H, Yuan C L, et al. Large-area single photon compressive imaging based on multiple micro-mirrors combination imaging method [J]. Optics Express, 2018, 26(15): 19080-19090. doi:  10.1364/OE.26.019080
[68] Luo H, Yuan X, Zeng Y. Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD [J]. Optics Express, 2013, 21(16): 18983-18993. doi:  10.1364/OE.21.018983
[69] Chen Z, Fan R, Li X, et al. Accuracy improvement of imaging lidar based on time-correlated single-photon counting using three laser beams [J]. Optics Communications, 2018, 429: 175-179. doi:  10.1016/j.optcom.2018.08.017
[70] Xie J, Zhang Z, Huang M, et al. Spatially modulated scene illumination for intensity-compensated 2D array photon-counting LiDAR imaging [J]. Chinese Physics B, 2022, 31(9): 090701.
[71] Zhang Y, Li S, Sun J, et al. Three-dimensional single-photon imaging through realistic fog in an outdoor environment during the day [J]. Optics Express, 2022, 30(19): 34497-34509. doi:  10.1364/OE.464297
[72] Zhao Q Y, Zhu D, Calandri N, et al. Single-photon imager based on a superconducting nanowire delay line [J]. Nature Photonics, 2017, 11(4): 247-251. doi:  10.1038/nphoton.2017.35
[73] Lan R M, Liu X F, Yao X R, et al. Single-pixel complementary compressive sampling spectrometer [J]. Optics Communications, 2016, 366: 349-353. doi:  10.1016/j.optcom.2016.01.016
[74] Zhao Yuchen, Tian Hao, Dou Jianhua, et al. Optimal design of superconducting nanowire single-photon detector with high light absorptivity in wavelength range of 3-5 µm based on asymmetric Fabry-Pérot cavity structure [J]. Laser & Optoelectronics Progress, 2022, 59(17): 1704002. (in Chinese)
[75] Jiang W H, Liu J H, Liu Y, et al. 1.25 GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit [J]. Optics Letters, 2017, 42(24): 5090-5093. doi:  10.1364/OL.42.005090
[76] Zhang H, Zhao X, Zhang Y, et al. Review of advances in single-photon LiDAR [J]. Chinese Journal of Lasers, 2022, 49(19): 1910003. (in Chinese) doi:  10.3788/CJL202249.1910003
[77] Marr J M, Wilkin F P. A better presentation of Planck’s radiation law [J]. American Journal of Physics, 2012, 80(5): 399-405. doi:  10.1119/1.3696974
[78] Wikipedia. Sunlight [EB/OL]. [2022-11-16]. https://en.wikipedia.org/wiki/Sunlight.
[79] Degnan J J. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements [J]. Journal of Geodynamics, 2002, 34(3-4): 503-549. doi:  10.1016/S0264-3707(02)00045-5
[80] Jerman J H, Clift D J, Mallinson S R. A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support [C]//IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, 1990: 140-144.
[81] Jarkko A, Akseli M, Jussi M, et al. MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT [C]//Proceedings of SPIE, 2010, 7680: 76800U.
[82] Xie X, Dai Y, Ji Y, et al. Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb [J]. IEEE Photonics Technology Letters, 2012, 24(8): 661-663. doi:  10.1109/LPT.2012.2185787
[83] Foley J M, Phillips J D. Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating [J]. Optics Letters, 2015, 40(11): 2637-2640. doi:  10.1364/OL.40.002637
[84] Yin B, Shay T M. Theoretical model for a Faraday anomalous dispersion optical filter [J]. Optics Letters, 1991, 16(20): 1617-1619. doi:  10.1364/OL.16.001617
[85] Cheng Xuewu, Gong Shunsheng, Li Faquan, et al. Daytime observation technology of lidar by using atomic optical filter [J]. Chinese Journal of Lasers, 2007, 34(3): 406-410. (in Chinese)
[86] Jacques E L, Juanita R R, Nadya O R, et al. Holographic nonspatial filter [C]//Proceedings of SPIE, 1995, 3532: 481-490.
[87] Jiang Yun, Liu Bo, Fan Wei. Study on characteristics of volume grating spectral filter [J]. Infrared and Laser Engineering, 2021, 50(12): 20210055. (in Chinese) doi:  10.3788/IRLA20210055