[1] Huang L, Yan H, Yan L, et al. Improvement of the environmental stability of sol-gel silica anti-reflection coatings [J]. Journal of Sol-Gel Science and Technology, 2022, 101(3): 630-636. doi:  10.1007/s10971-022-05725-z
[2] Tian H, Zhang L, Xu Y, et al. Comparision of silica anti-reflective films obtained via a sol-gel process in the presence of PEG or PVP [J]. Acta Physico-Chimica Sinica, 2012, 28(5): 1197. doi:  10.3866/PKU.WHXB201202231
[3] Li Y, Bai Q, Guan Y, et al. In situ plasma cleaning of large-aperture optical components in ICF [J]. Nuclear Fusion, 2022, 62(7): 076023. doi:  10.1088/1741-4326/ac555c
[4] Wang S Y, Yan H W, Li D J, et al. TEM and STEM studies on the cross-sectional morphologies of dual-/tri-layer broadband SiO2 antireflective films [J]. Nanoscale Research Letters, 2018, 13: 49. doi:  10.1186/s11671-018-2442-4
[5] Yin J, Cao Y. Research of laser-induced damage of aluminum alloy 5083 on micro-arc oxidation and composite coatings treatment [J]. Optics Express, 2019, 27(13): 18232-18245. doi:  10.1364/OE.27.018232
[6] Li Y, Bai Q, Sun H, et al. Research progress on contamination damage and cleaning technology of large-aperture diffraction grating [J]. Journal of Mechanical Engineering, 2022, 58(9): 270-282. (in Chinese) doi:  10.3901/JME.2022.09.270
[7] Yang L, Xiang X, Miao X X, et al. Influence of outgassing organic contamination on the transmittance and laser-induced damage of SiO2 sol-gel antireflection film [J]. Optical Engineering, 2015, 54(12): 126101. doi:  10.1117/1.OE.54.12.126101
[8] Li Y, Bai Q, Yao C, et al. Long-lasting antifogging mechanism for large-aperture optical surface in low-pressure air plasma in-situ treated [J]. Applied Surface Science, 2022, 581: 152358. doi:  10.1016/j.apsusc.2021.152358
[9] Wu G M, Shen J, Zou L P. Laser-induced damage on ordered and amorphous sol-gel silica coatings [J]. Optical Materials Express, 2014, 4(12): 2478.
[10] Yang L, Xiang X, Yuan X D, et al. Bulk damage and stress behavior of fused silica irradiated by nanosecond laser [J]. Optical Engineering, 2014, 53(4): 047103. doi:  10.1117/1.OE.53.4.047103
[11] Yu J X, Xiang X, He S B, et al. Laser-induced damage initiation and growth of optical materials [J]. Advances in Condensed Matter Physics, 2014, 1(1): 364627.
[12] Guo Y J, Zu X T, Jiang X D, et al. Laser-induced damage mechanism of the sol–gel single-layer SiO2 acid and base thin films [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(12-13): 3190. doi:  10.1016/j.nimb.2008.03.187
[13] Spaeth M L, Wegner P J, Suratwala T I, et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold [J]. Fusion Science and Technology, 2016, 69(1): 265. doi:  10.13182/FST15-119
[14] Yu H B, Wang C M, Zhang W, et al. Present status and outlook of laser cleaning application development [J]. Electric Welding Machine, 2014, 44(10): 80-84. (in Chinese)
[15] Chen J F, Zhang Y K, Kong D J, et al. Research progress of cleaning tiny particles by short pulsed laser [J]. Laser Technology, 2007, 31(3): 301-305. (in Chinese)
[16] Liu H, Miao X X, Yang K, et al. Atmosphere pressure plasma cleaning of grease contamination on sol-gel SiO2 coating [J]. High Power Laser and Particle Beams, 2015, 27(11): 112008. (in Chinese)
[17] Li Y, Ye Y, Liu H, et al. Time-resolved imaging for investigating laser-material interactions during laser irradiation cleaning on murals [J]. Optics & Laser Technology, 2023, 157: 108679.
[18] Ramakrishna S N, Nalam P C, Clasohm L Y, et al. Study of adhesion and friction properties on a nanoparticle gradient surface: Transition from JKR to DMT contact mechanics [J]. Langmuir the Acs Journal of Surfaces & Colloids, 2013, 29(1): 175-182.