[1] Uradzinski M, Guo H, Liu X, et al. Advanced indoor positioning using Zigbee wireless technology [J]. Wireless Personal Communications, 2017, 97(67): 6509-6518.
[2] Oulose A, Eyobu O S, Han D S. An indoor position estimation algorithm using smartphone IMU sensor data [J]. IEEE Access, 2019, 7(8): 11165-11177.
[3] Wang Y L, Lv J N, Li J H, et al. High precision indoor positioning system based on UWB [J]. Yangtze River Information Communication l, 2021, 34(3): 111-114, 117.
[4] Chen D L, Yang Z. Study on high precision indoor positioning technology based on UWB/MEMS[D]. Xuzhou: China University of Mining and Technology, 2015.(in Chinese)
[5] Sun B W, Fan Q G, Wu Y H, et al. Foot-mounted pedestrian navigation technology based on tightly coupled PDR/UWB [J]. Transducer and Microsystem Technologies, 2017, 36(3): 43-48.
[6] Zampella F, Angelis A D, Skog I, et al. A constraint approach for UWB and PDR fusion[C]//Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2012: 2-6.
[7] Chen L L, Yang Y, Yuan E, Zhao Y X, et al. Integrated indoor positioning algorithm based on UWB/PDR [J]. Information Technology and Network Security, 2019, 38(5): 53-57.
[8] Alhadrami S, Salman A, Khalifa H A. Ultra wideband positioning: an analytical study of emerging technologies[C]//Proceeding of International Conference Sensor Technologies and Applications (SENSORCOMM). IEEE, 2014: 1-9.
[9] Yin P Q, Lu D M, Yuan Y, et al. An improved non-local image de-noising algorithm based on Mahalanobis distance [J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(3): 404-410. (in Chinese)
[10] Xiong Hailiang, Bian Ruochen, Li Yujun, et al. Fault-Tolerant GNSS/SINS/DVL/CNS integrated navigation and positioning mechanism based on adaptive in-formation sharing factors [J]. IEEE Systems Journal, 2020, 14(3): 3744-3754. doi:  10.1109/JSYST.2020.2981366
[11] Wen Kai, Yu Kegen, Li Yingbing. A new quaternion Kalman filter based foot-mounted IMU and UWB tightly-coupled method for indoor pedestrian navigation [J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4340-4352. doi:  10.1109/TVT.2020.2974667
[12] Tian Q L, Wang K I K, Salcic Z. A resetting approach for INS and UWB sensor fusion using Particle Filter for pedestrian tracking [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(8): 5914-5921. doi:  10.1109/TIM.2019.2958471
[13] Ascher C, Zwirello L, Zwick T, et al. Integrity monitoring for UWB/INS tightly coupled pedestrian indoor scenarios [C]//Indoor Positioning and Indoor Navigation (IPIN), 2011 International Conference on. IEEE, 2011, PP(1-6): 6071948.
[14] Xiong Hailiang, Mai Zhenzhen, Tang Juan, et al. Robust GPS/INS/DVL navigation and positioning method using adaptive federated strong tracking filter based on weighted least square principle [J]. IEEE Access, 2019, 7: 26168-26178. doi:  10.1109/ACCESS.2019.2897222
[15] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software[M]. Canada: John Wiley & Sons, 2001: 303-306.
[16] Zipfel P H. Modeling and Simulation of Aerospace Vehicle Dynamics[M]. 2nd ed. USA: American Institute of Aeronautics and Astronautics, 2007: 98-101.
[17] Markley F L. Attitude error representations for Kalman filtering [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 311-317. doi:  10.2514/2.5048