[1] Hänsch T W. Nobel lecture: Passion for precision [J]. Rev Mod Phys, 2006, 78: 1297-1309. doi:  10.1103/RevModPhys.78.1297
[2] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications [J]. Communicat Phys, 2019, 2: 1-16.
[3] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science, 2018, 361: eaan8083. doi:  10.1126/science.aan8083
[4] Papp S B, Beha K, Del’Haye P, et al. Microresonator frequency comb optical clock [J]. Optica, 2014, 1: 10-14.
[5] Thorpe M J, Moll K D, Jones R J, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection [J]. Science, 2006, 311: 1595-1599. doi:  10.1126/science.1123921
[6] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs [J]. Science, 2018, 359: 887-891. doi:  10.1126/science.aao3924
[7] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology [J]. Nature, 2002, 416: 233-237. doi:  10.1038/416233a
[8] Pascal D, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450: 1214-1217. doi:  10.1038/nature06401
[9] Giacomo S, Faist J, Picqué N. On-chip mid-infrared and THz frequency combs for spectroscopy [J]. Appl Phys Lett, 2019, 114: 150401. doi:  10.1063/1.5097933
[10] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator- based optical frequency combs [J]. Science, 2011, 332: 555-559. doi:  10.1126/science.1193968
[11] Liu J, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs [J]. Nature Photon, 2020, 14: 486-491. doi:  10.1038/s41566-020-0617-x
[12] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science, 2018, 361(6402): 129-162.
[13] Hu J, He J, Liu J, et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs [J]. Nature Communication, 2020, 11: 4377. doi:  10.1038/s41467-020-18215-z
[14] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb [J]. Nature, 2020, 581(7807): 164-170. doi:  10.1038/s41586-020-2239-3
[15] Chembo Y K. Kerr optical frequency combs: Theory, applications and perspectives [J]. Nanophoton, 2016, 5(2): 214-230. doi:  10.1515/nanoph-2016-0013
[16] Zheng Y Z, Sun C Z, Xiong B, et al. Integrated gallium nitride nonlinear photonics [J]. Laser & Photon Rev, 2021, 16(1): 2100071.
[17] Xue X X, Zheng X P, Zhou B K. Super-efficient temporal solitons in mutually coupled optical cavities [J]. Nature Photon, 2019, 13: 616-622. doi:  10.1038/s41566-019-0436-0
[18] Lu Z Z, Chen H J, Wang W Q, et al. Synthesized soliton crystals [J]. Nature Communication, 2021, 12: 3179. doi:  10.1038/s41467-021-23172-2
[19] Zhang X Y, Cao Q T, Zhuo W, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. [J]. Nature Photon, 2019, 13: 21-24. doi:  10.1038/s41566-018-0297-y
[20] Hu Y, Ding S L, Qin Y C, et al. Generation of optical frequency comb via giant optomechanical oscillation [J]. Phys Rev Lett, 2021, 127: 134301. doi:  10.1103/PhysRevLett.127.134301