留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快激光成丝产生太赫兹波的研究

杨晶 赵佳宇 郭兰军 刘伟伟

杨晶, 赵佳宇, 郭兰军, 刘伟伟. 超快激光成丝产生太赫兹波的研究[J]. 红外与激光工程, 2015, 44(3): 996-1007.
引用本文: 杨晶, 赵佳宇, 郭兰军, 刘伟伟. 超快激光成丝产生太赫兹波的研究[J]. 红外与激光工程, 2015, 44(3): 996-1007.
Yang Jing, Zhao Jiayu, Guo Lanjun, Liu Weiwei. Study of terahertz radiation from filamentation induced by ultrafast laser pulses[J]. Infrared and Laser Engineering, 2015, 44(3): 996-1007.
Citation: Yang Jing, Zhao Jiayu, Guo Lanjun, Liu Weiwei. Study of terahertz radiation from filamentation induced by ultrafast laser pulses[J]. Infrared and Laser Engineering, 2015, 44(3): 996-1007.

超快激光成丝产生太赫兹波的研究

基金项目: 

国家自然科学基金面上项目(11174156);国家重点基础研究发展规划项目(973 计划)(2014CB339800;2011CB808100)

详细信息
    作者简介:

    杨晶(1990-),女,博士生,主要从事太赫兹波产生和应用方面的研究.Email:yangjingxqq@126.com

  • 中图分类号: O437

Study of terahertz radiation from filamentation induced by ultrafast laser pulses

  • 摘要: 研究了超快激光脉冲成丝辐射太赫兹(Terahertz, THz)波.考虑到THz 波在安全检查和国防建设等方面具有十分重要的意义, 文中总结了超快激光成丝产生太赫兹波的物理机制和控制技术, 并对各种相关理论和技术进行了分析.文章从理论模型、偏振特性和远场角分布情况等方面来介绍物理机制, 并探讨为满足应用需求的控制技术, 主要包括强度、偏振和波形控制.研究表明, 超快激光成丝辐射太赫兹波的产生方式、理论模型和控制形式均有多种, 其中理论模型主要包括四波混频模型和光电流模型, 强度控制技术主要包括双色场泵浦和在光丝通道两侧施加偏压.
  • [1]
    [2] Zhang Cunlin, Zhang Yan, Zhao Guozhong, et al. Terahertz Sensing and Imaging[M]. Beijing: National Defence Industry Press, 2008: 1-5. (in Chinese)
    [3]
    [4] Zhang Yizhu. Research of the physical mechanism of new broadband THz source[D]. Tianjin: Nankai University, 2012. (in Chinese)
    [5] Liu Jia, Fan Wenhui. Investigation of various fabrics in terahertz time-domain spectroscopy[J]. Infrared and Laser Engineering, 2013, 42(6): 1537-1541. (in Chinese)
    [6]
    [7]
    [8] Sheng Z M, Wu H C, Li K, et al. Terahertz radiation from the vacuum-plasma interface driven by ultrashort intense laser pulses[J]. Physical Review E, 2004, 69(2): 025401.
    [9]
    [10] Gao Hui, Zhao Jiayu, Liu Weiwei. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optcs Precision Engineering, 2013, 21(3): 598-607. (in Chinese)
    [11] Wang T J, Daigle J F, Chen Y, et al. High energy THz generation from meter-long two-color filaments in air[J]. Laser Physics Letters, 2010, 7(7): 517.
    [12]
    [13] Zhong H, Karpowicz N, Zhang X C. Terahertz emission profile from laser-induced air plasma[J]. Applied Physics Letters, 2006, 88(26): 261103-261103-3.
    [14]
    [15] Hamster H, Sullivan A, Gordon S, et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 1993, 71(17): 2725.
    [16]
    [17]
    [18] Proulx A, Talebpour A, Petit S, et al. Fast pulsed electric field created from the self-generated filament of a femtosecond Ti: Sapphire laser pulse in air[J]. Optics Communications, 2000, 174(1): 305-309.
    [19] Loffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air[J]. Applied Physics Letters, 2000, 77(3): 453-455.
    [20]
    [21] Tzortzakis S, Mchain G, Patalano G, et al. Coherent subterahertz radiation from femtosecond infrared filaments in air[J]. Optics Letters, 2002, 27(21): 1944-1946.
    [22]
    [23] Houard A, Liu Y, Mysyrowicz A, et al. Calorimetric detection of the conical terahertz radiation from femtosecond laser filaments in air[J]. Applied Physics Letters, 2007, 91(24): 241105-241105-3.
    [24]
    [25] Amico D C, Houard A, Franco M, et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air[J]. Physical Review Letters, 2007, 98(23): 235002.
    [26]
    [27]
    [28] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 2000, 25(16): 1210-1212.
    [29]
    [30] Kress M, Lffler T, Eden S, et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves[J]. Optics Letters, 2004, 29(10): 1120-1122.
    [31] Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air[J]. Physical Review Letters, 2006, 96(7): 075005.
    [32]
    [33] Zhang Y, Chen Y, Marceau C, et al. Non-radially polarized THz pulse emitted from femtosecond laser filament in air[J]. Optics Express, 2008, 16(20): 15483-15488.
    [34]
    [35]
    [36] Oh T I, You Y S, Kim K Y. Two-dimensional plasma current and optimized terahertz generation in two-color photoionization[J]. Optics Express, 2012, 20(18): 19778-19786.
    [37]
    [38] Houard A, Liu Y, Prade B, et al. Polarization analysis of terahertz radiation generated by four-wave mixing in air[J]. Optics Letters, 2008, 33(11): 1195-1197.
    [39]
    [40] Zhang Y, Chen Y, Xu S, et al. Portraying polarization state of terahertz pulse generated by a two-color laser field in air[J]. Optics Letters, 2009, 34(18): 2841-2843.
    [41]
    [42] Kim K Y, Glownia J H, Taylor A J, et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields[J]. Optics Express, 2007, 15(8): 4577-4584.
    [43]
    [44] Kim K Y, Taylor A J, Glownia J H, et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nature Photonics, 2008, 2(10): 605-609.
    [45]
    [46] Cheng C C, Wright E M, Moloney J V. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings[C]//Quantum Electronics and Laser Science Conference, 2001: 47.
    [47] Sheng Z M, Mima K, Zhang J, et al. Emission of electromagnetic pulses from laser wakefields through linear mode conversion[J]. Physical Review Letters, 2005, 94(9): 095003.
    [48]
    [49]
    [50] Amico C D, Houard A, Akturk S, et al. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment[J]. New Journal of Physics, 2008, 10(1): 013015.
    [51]
    [52] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases[J]. Physical Review Letters, 2009, 102(9): 093001.
    [53]
    [54] Jahangiri F, Hashida M, Tokita S, et al. Directional elliptically polarized terahertz emission from air plasma produced by circularly polarized intense femtosecond laser pulses[J]. Applied Physics Letters, 2011, 99(16): 161505-161505-3.
    [55] Wu H C, Meyer-ter-Vehn J, Ruhl H, et al. Terahertz radiation from a laser plasma filament[J]. Physical Review E, 2011, 83(3): 036407.
    [56]
    [57] Bai Y, Song L, Xu R, et al. Waveform-controlled terahertz radiation from the air filament produced by few-cycle laser pulses[J]. Physical Review Letters, 2012, 108(25): 255004.
    [58]
    [59]
    [60] Li M, Li W, Shi Y, et al. Verification of the physical mechanism of THz generation by dual-color ultrashort laser pulses[J]. Applied Physics Letters, 2012, 101(16): 161104-161104-3.
    [61] You Y S, Oh T I, Kim K Y. Mechanism of elliptically polarized terahertz generation in two-color laser filamentation[J]. Optics Letters, 2013, 38(7): 1034-1036.
    [62]
    [63]
    [64] Berg L, Skupin S, Khler C, et al. 3D Numerical simulations of THz generation by two-color laser filaments[J]. Physical Review Letters, 2013, 110(7): 073901.
    [65]
    [66] Chen Y, Marceau C, Liu W, et al. Elliptically polarized terahertz emission in the forward direction of a femtosecond laser filament in air[J]. Applied Physics Letters, 2008, 93: 231116.
    [67] Chen Y, Marceau C, Gnier S, et al. Elliptically polarized Terahertz emission through four-wave mixing in a two-color filament in air[J]. Optics Communications, 2009, 282(21): 4283-4287.
    [68]
    [69]
    [70] Minami Y, Kurihara T, Yamaguchi K, et al. Longitudinal terahertz wave generation from an air plasma filament induced by a femtosecond laser[J]. Applied Physics Letters, 2013, 102(15): 151106-151106-3.
    [71] Chen Y, Wang T, Marceau C, et al. Characterization of terahertz emission from a dc-biased filament in air[J]. Applied Physics Letters, 2009, 95(10): 101101-101101-3.
    [72]
    [73] Wu H C, Meyer-ter-Vehn J, Sheng Z M. Phase-sensitive terahertz emission from gas targets irradiated by few-cycle laser pulses[J]. New Journal of Physics, 2008, 10(4): 043001.
    [74]
    [75] Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma[J]. Physical Review Letters, 2009, 103(2): 023001.
    [76]
    [77] Manceau J M, Massaouti M, Tzortzakis S. Coherent control of THz pulses polarization from femtosecond laser filaments in gases[J]. Optics Express, 2010, 18(18): 18894-18899.
    [78]
    [79]
    [80] Panov N A, Kosareva O G, Andreeva V A, et al. Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament[J]. JETP Letters, 2011, 93(11): 638-641.
    [81] -
    [82]
    [83]
  • [1] 赵树森, 何宏智, 韩世飞, 姜璐, 杜家宝, 于海娟, 林学春, 张谷令.  透明硬脆材料激光剥离关键问题研究(特邀) . 红外与激光工程, 2024, 53(1): 20230487-1-20230487-14. doi: 10.3788/IRLA20230487
    [2] 王谦豪, 杨小君, 温文龙, 赵华龙, 李益.  飞秒激光微加工中诱导空气等离子体的超快观测研究 . 红外与激光工程, 2023, 52(11): 20230158-1-20230158-11. doi: 10.3788/IRLA20230158
    [3] 王涛, 李灿, 刘洋, 任博, 唐振强, 常洪祥, 谢戈辉, 郭琨, 吴坚, 许将明, 冷进勇, 马鹏飞, 粟荣涛, 李文雪, 周朴.  基于光纤拉伸器锁相实现两路超快激光相干偏振合成 . 红外与激光工程, 2023, 52(6): 20220869-1-20220869-8. doi: 10.3788/IRLA20220869
    [4] 毕帅, 张晓兵, 张伟, 李元成, 马宁, 蔡敏, 毛忠.  超快激光加工小孔穿透成形时间的影响因素试验研究 . 红外与激光工程, 2023, 52(12): 20230347-1-20230347-10. doi: 10.3788/IRLA20230347
    [5] 郭婕, 闫东钰, 毕根毓, 丰傲然, 刘博文, 储玉喜, 宋有建, 胡明列.  色散管理光纤锁模激光器在近零色散域的非线性优化 . 红外与激光工程, 2022, 51(12): 20220226-1-20220226-7. doi: 10.3788/IRLA20220226
    [6] 刘雨晴, 孙洪波.  非线性激光制造的进展与应用(特邀) . 红外与激光工程, 2022, 51(1): 20220005-1-20220005-15. doi: 10.3788/IRLA20220005
    [7] 史文华, 林海淼, 赵小宇, 李佳宁, 王大轶.  载人登月任务中的控制技术展望(特约) . 红外与激光工程, 2020, 49(5): 20201007-20201007-6. doi: 10.3788/IRLA20201007
    [8] 林子杰, 徐剑, 程亚.  激光辅助三维金属微打印(特邀) . 红外与激光工程, 2020, 49(12): 20201079-1-20201079-17. doi: 10.3788/IRLA20201079
    [9] 韦晓莹, 李心元, 吴环宝, 王天鹤, 贾晓东.  光诱导氧化钒薄膜原位太赫兹波调制特性研究 . 红外与激光工程, 2019, 48(10): 1017005-1017005(7). doi: 10.3788/IRLA201948.1017005
    [10] 毕凌志, 袁明辉, 朱亦鸣.  利用太赫兹波检测建筑物内钢筋的方法 . 红外与激光工程, 2019, 48(1): 125003-0125003(7). doi: 10.3788/IRLA201948.0125003
    [11] 赵力杰, 周艳宗, 夏海云, 武腾飞, 韩继博.  飞秒激光频率梳测距综述 . 红外与激光工程, 2018, 47(10): 1006008-1006008(16). doi: 10.3788/IRLA201847.1006008
    [12] 王启超, 汪家春, 赵大鹏, 陈宗胜, 董海龙, 时家明.  碳类烟幕材料对太赫兹波的衰减特性 . 红外与激光工程, 2017, 46(5): 525001-0525001(5). doi: 10.3788/IRLA201746.0525001
    [13] 范培迅, 钟敏霖.  超快激光制备金属表面微纳米抗反射结构进展 . 红外与激光工程, 2016, 45(6): 621001-0621001(12). doi: 10.3788/IRLA201645.0621001
    [14] 王花, 孙晓红, 王真, 齐永乐, 王毅乐.  太赫兹波超材料吸波体的特性分析 . 红外与激光工程, 2016, 45(12): 1225003-1225003(5). doi: 10.3788/IRLA201645.1225003
    [15] 刘伟伟, 赵佳宇, 张逸竹, 王志, 储蔚, 曾斌, 程亚.  飞秒激光成丝过程中的太赫兹波超光速传输现象研究 . 红外与激光工程, 2016, 45(4): 402001-0402001(7). doi: 10.3788/IRLA201645.0402001
    [16] 杨成娟, 田延岭, 崔良玉, 张大卫.  超快激光辐照诱导金属钛的变化 . 红外与激光工程, 2015, 44(7): 2002-2007.
    [17] 宋立伟, 白亚, 许荣杰, 李闯, 刘鹏, 李儒新, 徐至展.  圆偏振周期量级红外激光脉冲驱动产生太赫兹辐射 . 红外与激光工程, 2014, 43(9): 2925-2928.
    [18] 王豆豆, 王丽莉.  低损耗传输太赫兹波的Topas多孔纤维设计 . 红外与激光工程, 2013, 42(9): 2409-2413.
    [19] 李忠洋, 李继武, 邴丕彬, 徐德刚, 姚建铨.  表面出射太赫兹波参量振荡器的设计与增强输出 . 红外与激光工程, 2013, 42(4): 935-939.
    [20] 李乾坤, 李德华, 周薇, 马建军, 鞠智鹏, 屈操.  单缝双环结构超材料太赫兹波调制器 . 红外与激光工程, 2013, 42(6): 1553-1556.
  • 加载中
计量
  • 文章访问数:  651
  • HTML全文浏览量:  99
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-20
  • 修回日期:  2014-08-15

超快激光成丝产生太赫兹波的研究

    作者简介:

    杨晶(1990-),女,博士生,主要从事太赫兹波产生和应用方面的研究.Email:yangjingxqq@126.com

基金项目:

国家自然科学基金面上项目(11174156);国家重点基础研究发展规划项目(973 计划)(2014CB339800;2011CB808100)

  • 中图分类号: O437

摘要: 研究了超快激光脉冲成丝辐射太赫兹(Terahertz, THz)波.考虑到THz 波在安全检查和国防建设等方面具有十分重要的意义, 文中总结了超快激光成丝产生太赫兹波的物理机制和控制技术, 并对各种相关理论和技术进行了分析.文章从理论模型、偏振特性和远场角分布情况等方面来介绍物理机制, 并探讨为满足应用需求的控制技术, 主要包括强度、偏振和波形控制.研究表明, 超快激光成丝辐射太赫兹波的产生方式、理论模型和控制形式均有多种, 其中理论模型主要包括四波混频模型和光电流模型, 强度控制技术主要包括双色场泵浦和在光丝通道两侧施加偏压.

English Abstract

参考文献 (83)

目录

    /

    返回文章
    返回