留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多角度成像解析大豆冠层的二向反射特征

张东彦 梁栋 赵晋陵 Coburn Craig Wang Zhijie 王秀

张东彦, 梁栋, 赵晋陵, Coburn Craig, Wang Zhijie, 王秀. 多角度成像解析大豆冠层的二向反射特征[J]. 红外与激光工程, 2013, 42(3): 787-797.
引用本文: 张东彦, 梁栋, 赵晋陵, Coburn Craig, Wang Zhijie, 王秀. 多角度成像解析大豆冠层的二向反射特征[J]. 红外与激光工程, 2013, 42(3): 787-797.
Zhang Dongyan, Liang Dong, Zhao Jinling, Coburn Craig, Wang Zhijie, Wang Xiu. Bidirectional reflectance characteristics of soybean canopy using multi-angle hyperspectral imaging[J]. Infrared and Laser Engineering, 2013, 42(3): 787-797.
Citation: Zhang Dongyan, Liang Dong, Zhao Jinling, Coburn Craig, Wang Zhijie, Wang Xiu. Bidirectional reflectance characteristics of soybean canopy using multi-angle hyperspectral imaging[J]. Infrared and Laser Engineering, 2013, 42(3): 787-797.

多角度成像解析大豆冠层的二向反射特征

基金项目: 

安徽省自然科学基金青年基金(1308085);安徽省高等学校省级自然科学研究项目(KJ2013A026);国家高技术研究发展计划(2012AA101903);高等学校博士学科点科研基金(20113401110006);安徽大学博士科研启动项目

详细信息
    作者简介:

    张东彦(1982- ),男,讲师,博士,主要从事高光谱图像处理及遥感定量化的研究. Email:zhangdy@nercita.org.cn;王秀(1965- ),男,研究员,博士,主要从事精准农业装置的开发与应用。Email:wangx@nercita.org.cn.

    张东彦(1982- ),男,讲师,博士,主要从事高光谱图像处理及遥感定量化的研究. Email:zhangdy@nercita.org.cn;王秀(1965- ),男,研究员,博士,主要从事精准农业装置的开发与应用。Email:wangx@nercita.org.cn.

  • 中图分类号: TP79;S127

Bidirectional reflectance characteristics of soybean canopy using multi-angle hyperspectral imaging

  • 摘要: 植被冠层二向性反射特征是定量遥感必须关注的一个问题。论文借助自主研发的多角度成像系统,在不同观测时间对不同种植密度下的大豆冠层进行多角度成像数据采集,通过对图谱合一的高光谱影像中大豆植株、土壤背景和阴影叶片进行逐步分离,对比分析纯大豆植被与植被-土壤混合冠层的二向反射(Bidirectional Reflectance, BR)变化特征,研究发现:在主平面观测时,土壤光谱去除后,即纯植被冠层反射率在前向观测时,随着天顶角的减小而增大,这不同于植被和土壤同时存在时的研究结果(BR 随着天顶角的增加而增大);当观测方向由主平面的前向朝后向变动时,可见光和近红外波段的纯植被冠层反射率表现为逐步增大的趋势,这和土壤光谱去除前的变化趋势也不同;在垂直主平面观测时,去除土壤背景后的纯植被冠层反射率与混合植被反射率特征有相同的趋势,但在垂直主平面方向的对称性更强。上述结果在不同密度、不同观测时间的大豆冠层BR 特征有相近的趋势,这为多角度遥感的发展提供了必要的基础研究。
  • [1] Feng Xiaoming, Zhao Yingshi. A spectral -directional reflectance remote sensing model of the semiarid landscape[J]. Journal of Remote Sensing, 2005, 9 (4): 337-342. (in Chinese)
    [2]
    [3]
    [4] Wu Chaoyang, Niu Zheng, Wang Jindi, et al. Predicting leaf area index in wheat using angular vegetation indices derived from in situ canopy measurements [J]. Canadian Journal of Remote Sensing, 2010, 36(4): 301-312.
    [5] Qin Wenhan, Xiang Yueqin. An analytica1 model for bidirectional reflectance factor of multi -component vegetation canopies [J]. Science China (Series C), l996, 26: 542-551. (in Chinese)
    [6]
    [7] Sandmeier St, Muller Ch, Hosgood B, et al. Physical mechanisms in hyperspectral BRDF data o f grass and watercress [J]. Remote Sensing of Environment, 1998, 66: 222-233.
    [8]
    [9] Sandmeier S, Deering D W. Structure analysis and classification of Boreal forests using airborne hyperspectral BRDF data from ASAS [J]. Remote Sensing of Environment, 1999, 69: 281-295.
    [10]
    [11]
    [12] D'Entremont, Schaaf R P, Lucht C B, et al. Retrieval of red spectral albedo and bidirectional reflectance from 1km2 satellite observations for the New England region [J]. Journal of Geophysical Research, 1999, 104: 6229-6339.
    [13]
    [14] Gao Feng, Schaaf C B, Strahler A H, et al. Detecting vegetation structure using a Kernel-Based BRDF model [J]. Remote Sensing of Environment, 2003, 86:1 98-205.
    [15] Shen Guangrong, Wang Renchao. A study on multicomponent bidirectional reflectance model for rice [J]. Chinese Journal of Applied Ecology, 2003, 14(3): 394-398. (in Chinese)
    [16]
    [17] Li Yunmei. Theroy and Application of Vegetation Radiation Transfor [M]. Nanjing: Nanjing Normal Unversity, 2005: 11. (in Chinese)
    [18]
    [19] Schneider Th, Manakos I. BRDF approximation of maize and canopy parameter retrieval by ProSail inversion [C]//The 3rd EARSEL Workshop on Imaging Spectroscopy, 2003, 5: 13-16.
    [20]
    [21]
    [22] Huang Wenjiang, Wang Jihua, Liu Liangyun, et al. Remote sensing identification of plant structural types based on multi -temporal and bidirectional canopy spectrum [J]. Transactions of The Chinese Society of Agricultural Engineering, 2005, 21(6) :1-5. (in Chinese)
    [23]
    [24] Schut. Imaging spectroscopy for characterization of grass swards [D]. Netherlands: Wageningen University, 2003.
    [25] Casa R, Jones H G. Retrieval of crop canopy properties: a comparison between model inversion from hyperspectral data and image classification [J]. International Journal of Remote Sensing, 2004, 25( 6): 1119-1130.
    [26]
    [27] Zhang Dongyan. Diagnosis mechanism and methods of crop chlorophyll information based on hypersepctral imaging technology [D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
    [28]
    [29] Wang Zhijie, Coburn C A, Ren Xuemin, et al. Effect of soil surface roughness and scene components on soil surface bidirectional reflectance factor [J]. Canadian Journal of Soil Science, 2012, 92(2): 297-313.
    [30]
    [31] Liu Qinhuo, Xin Xiaozhou, Tang Pin, et al. Research Model,Application and Uncertainty of Quantitative Remote Sensing [M]. Beijing: Science Press, 2010: 1. (in Chinese)
    [32]
    [33] Wang Zhijie, Coburn C A, Ren Xuemin, et al. Effect of soil surface roughness and scene components on soil surface bidirectional reflectance factor [J]. Canadian Journal of Soil Science, 2012, 92(2): 297-313.
    [34]
    [35] Li Xiaowen, Strahler A, Zhu Qijiang. Geometric -optical bidirectional reflectance modelling of ground objects and its progress in measurement [J]. Remote Sensing For Land Resources, 1991, 7(1): 9-19. (in Chinese)
    [36]
    [37] Kimes D S, Newcomb W W, Tucker C J, et al. Directional reflectance factor distribution for cover types of Northern Afirica [J]. Remote Sensing of Enviroment, 1985, 18:1-19.
    [38]
    [39]
    [40] Kimes D S. Dynamics of directional reflectance factor distributions for vegetation canopies [J]. Application Optics, 1993, 22(9): 1364-1372.
    [41]
    [42] Kuusk A. The angular distribution of reflectance and vegetation indices in barley and clover canopies [J]. Remote Sensing of Enviroment, 1991, 37: 143-151.
    [43]
    [44] Li Yunmei. Studying on rice BRDF model integration and its application [D]. Hangzhou: Zhejiang Unversity, 2001. (in Chinese)
    [45]
    [46] Chen Jieliang. Hyperspectral Remote Sensing Information Extraction and BRDF Model of Soil [M]. Hangzhou: Zhejiang University, 2008. (in Chinese)
    [47] Li Yunmei, Wang Renchao, Wang Xiuzhen, et al. Effect of rice canopy structural changes on bidirectional reflectance[J]. Chinese Journal of Applied Ecology, 2001, 32 (3):47-52.(in Chinese)
    [48]
    [49]
    [50] Haboudane D, Miller J, Tremblay N, et al. Integrated narrow -band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81: 416-426.
    [51]
    [52] Tan Changwei, Wang Jihua, Lu Jianfei, et al. Summer maize growth supervision and nutrition diagnosis with red edge parameters [J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 82-86. (in Chinese)
    [53]
    [54] Niu Zheng. Recent advance in studies on vegetative bidirectional reflecting property [J]. Remote Sensing Technology and Appication, 1997, 12(3): 49-57. (in Chinese)
    [55] Li Yunmei, Wang Renchao, Wang Xiuzhen, et al. Simulation of bidirectional reflectance on rice canopy and its inversion[J]. Chinese Journal of Rice Science, 2002, 16 (3): 291 -294. (in Chinese)
    [56] Fan Wenjie, Yan Binyan, Xu Xiru, et al. Crop area and leaf area index simultaneous retrieval based on spatial scaling transformation [J]. Science China Earth Science, 2010, 40 (12): 1735-1732. (in Chinese)
    [57]
    [58] Yang Guijun, Xing Zhurong, Huang Wenjiang, et al. Analysis of winter wheat canopy structure for different plant types of growth period [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 227-234.(in Chinese)
    [59]
    [60] Zhang Zhengyi. Effect on Yield and Quality of Soybean in Different Sowing Density and Relay-cropping [M]. Chengdu: Sichuan Agricultural University, 2008. (in Chinese)
    [61]
    [62] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages [J]. Remote Sensing of Environment, 2002, 81: 337-354.
    [63]
    [64] Haboudane D, Miller J R, Pattey E. Hyperspectral vegetation in dices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture [J]. Remote Sensing of Environment, 2004, 90: 337-352.
    [65]
  • [1] 罗木生, 于凤全, 王俊敏, 黎漫斯.  红外制导空舰导弹最大攻击角解析计算方法 . 红外与激光工程, 2022, 51(7): 20210558-1-20210558-6. doi: 10.3788/IRLA20210558
    [2] 游丽.  基于块稀疏贝叶斯学习的SAR图像目标方位角估计方法 . 红外与激光工程, 2022, 51(4): 20210282-1-20210282-6. doi: 10.3788/IRLA20210282
    [3] 李翔宇, 彭勃, 江波, 阮萍.  基于角接触球轴承的小型经纬仪方位轴倾斜误差修正 . 红外与激光工程, 2021, 50(12): 20210172-1-20210172-11. doi: 10.3788/IRLA20210172
    [4] 何赛灵, 陈祥, 李硕, 姚辛励, 徐展鹏.  小型高光谱图谱仪与激光雷达及其海洋应用 . 红外与激光工程, 2020, 49(2): 0203001-0203001. doi: 10.3788/IRLA202049.0203001
    [5] &陈双远, &张芳, 齐琳琳, 韩成鸣, 曾丽, 许方宇.  国内典型天文台站大气红外背景辐射实测分析 . 红外与激光工程, 2019, 48(12): 1203010-1203010(9). doi: 10.3788/IRLA201948.1203010
    [6] 张西辉, 周召发, 刘先一, 朱文勇.  倾斜状态下数字天顶仪快速定位方法分析 . 红外与激光工程, 2018, 47(2): 217002-0217002(6). doi: 10.3788/IRLA201847.0217002
    [7] 杨上, 周召发, 刘先一, 张西辉.  基于数字天顶仪的星点图像坐标误差分析 . 红外与激光工程, 2018, 47(7): 726002-0726002(8). doi: 10.3788/IRLA201847.0726002
    [8] 杨上, 周召发, 刘先一, 张辉.  粗调平状态数字天顶仪定位方法研究 . 红外与激光工程, 2018, 47(8): 817007-0817007(10). doi: 10.3788/IRLA201847.0817007
    [9] 刘先一, 张志利, 周召发, 张西辉, 杨上.  基于数字天顶仪的时间标定方法 . 红外与激光工程, 2017, 46(10): 1017007-1017007(6). doi: 10.3788/IRLA201775.1017007
    [10] 张文涛, 李跃文, 占平平, 熊显名.  基于太赫兹时域光谱技术与PCA-SVM的转基因大豆油鉴别研究 . 红外与激光工程, 2017, 46(11): 1125004-1125004(6). doi: 10.3788/IRLA201746.1125004
    [11] 刘先一, 周召发, 张志利, 刘殿剑, 朱文勇.  基于数字天顶仪的视场角分析 . 红外与激光工程, 2016, 45(6): 617001-0617001(6). doi: 10.3788/IRLA201645.0617001
    [12] 李彬, 桑吉章, 宁津生.  空间碎片半解析法轨道预报精度性能分析 . 红外与激光工程, 2015, 44(11): 3310-3316.
    [13] 张新帅, 周召发, 黄先祥.  改进的数字天顶仪定位方法 . 红外与激光工程, 2015, 44(4): 1254-1259.
    [14] 段运生, 张东彦, 黄林生, 赵晋陵.  冻害胁迫小麦的图谱特征解析研究 . 红外与激光工程, 2015, 44(7): 2218-2223.
    [15] 代虎, 颜昌翔, 吴从均.  气溶胶偏振探测仪检偏器方位角优化 . 红外与激光工程, 2015, 44(4): 1243-1248.
    [16] 肖茂森, 李春艳, 吴易明, 陆卫国, 王海霞.  利用新型偏振器件实现方位角测量 . 红外与激光工程, 2015, 44(2): 611-615.
    [17] 张东彦, 赵晋陵, 黄林生, 马雯萩.  用于高光谱图像分类的归一化光谱指数的构建与应用 . 红外与激光工程, 2014, 43(2): 586-594.
    [18] 李春艳, 吴易明, 高立民, 陆卫国, 王卫峰.  格兰-泰勒棱镜消光比分析 . 红外与激光工程, 2014, 43(1): 173-177.
    [19] 杨咚, 余伟.  Sage_Husa自适应滤波在大方位失准角初始对准的研究 . 红外与激光工程, 2013, 42(8): 2197-2201.
    [20] 张东彦, 刘良云, 黄文江, Coburn Craig, 梁栋.  利用图谱特征解析和反演作物叶绿素密度 . 红外与激光工程, 2013, 42(7): 1871-1881.
  • 加载中
计量
  • 文章访问数:  361
  • HTML全文浏览量:  63
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-22
  • 修回日期:  2012-08-19
  • 刊出日期:  2013-03-25

多角度成像解析大豆冠层的二向反射特征

    作者简介:

    张东彦(1982- ),男,讲师,博士,主要从事高光谱图像处理及遥感定量化的研究. Email:zhangdy@nercita.org.cn;王秀(1965- ),男,研究员,博士,主要从事精准农业装置的开发与应用。Email:wangx@nercita.org.cn.

    张东彦(1982- ),男,讲师,博士,主要从事高光谱图像处理及遥感定量化的研究. Email:zhangdy@nercita.org.cn;王秀(1965- ),男,研究员,博士,主要从事精准农业装置的开发与应用。Email:wangx@nercita.org.cn.

基金项目:

安徽省自然科学基金青年基金(1308085);安徽省高等学校省级自然科学研究项目(KJ2013A026);国家高技术研究发展计划(2012AA101903);高等学校博士学科点科研基金(20113401110006);安徽大学博士科研启动项目

  • 中图分类号: TP79;S127

摘要: 植被冠层二向性反射特征是定量遥感必须关注的一个问题。论文借助自主研发的多角度成像系统,在不同观测时间对不同种植密度下的大豆冠层进行多角度成像数据采集,通过对图谱合一的高光谱影像中大豆植株、土壤背景和阴影叶片进行逐步分离,对比分析纯大豆植被与植被-土壤混合冠层的二向反射(Bidirectional Reflectance, BR)变化特征,研究发现:在主平面观测时,土壤光谱去除后,即纯植被冠层反射率在前向观测时,随着天顶角的减小而增大,这不同于植被和土壤同时存在时的研究结果(BR 随着天顶角的增加而增大);当观测方向由主平面的前向朝后向变动时,可见光和近红外波段的纯植被冠层反射率表现为逐步增大的趋势,这和土壤光谱去除前的变化趋势也不同;在垂直主平面观测时,去除土壤背景后的纯植被冠层反射率与混合植被反射率特征有相同的趋势,但在垂直主平面方向的对称性更强。上述结果在不同密度、不同观测时间的大豆冠层BR 特征有相近的趋势,这为多角度遥感的发展提供了必要的基础研究。

English Abstract

参考文献 (65)

目录

    /

    返回文章
    返回