留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合轴精密跟踪技术的应用与发展

马佳光 唐涛

马佳光, 唐涛. 复合轴精密跟踪技术的应用与发展[J]. 红外与激光工程, 2013, 42(1): 218-227.
引用本文: 马佳光, 唐涛. 复合轴精密跟踪技术的应用与发展[J]. 红外与激光工程, 2013, 42(1): 218-227.
Ma Jiaguang, Tang Tao. Review of compound axis servomechanism tracking control technology[J]. Infrared and Laser Engineering, 2013, 42(1): 218-227.
Citation: Ma Jiaguang, Tang Tao. Review of compound axis servomechanism tracking control technology[J]. Infrared and Laser Engineering, 2013, 42(1): 218-227.

复合轴精密跟踪技术的应用与发展

基金项目: 

国家863项目

详细信息
    作者简介:

    马佳光(1941-),男,研究员,博士生导师,主要研究领域为光电测量和光束控制技术。Email:mjg@ioe.ac.cn

  • 中图分类号: TP273

Review of compound axis servomechanism tracking control technology

  • 摘要: 复合轴是双通道控制的一种实现结构,可大幅度提高光电跟踪系统的跟踪精度和响应频率,在光电跟踪观测、激光通讯和光束稳定控制中有着广泛应用。在高精度跟踪控制领域,复合轴控制技术是实现微弧度角秒级甚至亚微弧度非常有效的手段。文中介绍了复合轴跟踪系统的基本原理和主要技术问题。在复合轴控制系统中,主轴、子轴的控制带宽匹配是实现复合轴控制技术的前提,子轴(快速反射镜)的精度是复合轴精度的制约。重点分析了复合轴跟踪系统近年的发展与技术进步,如多重复合轴、虚拟复合轴以及自适应光学和复合控制等技术在复合轴系统中的应用等。
  • [1] Thanmas W. Digital laser ranging and tracking using a compound axis servomechanism[J]. Applied Optics, 1966, 5(4): 497-505.
    [2]
    [3] Krasovsky A A. On two-channel control systems described by equations with complex parameters[J]. Avtomat i Telemekh, 1957, 18(1): 1-10.
    [4]
    [5]
    [6] Neuman D B. The analysis of cross-coupling effects on the stability of two-dimensional, orthogonal, feedback control systems[J]. IRE Transaction on Automatic Control, 1960, 5(4): 314-320.
    [7] Hilkert J M. Inertially stabilized platform technology [J]. IEEE Control Systems Magazine, 2008, 28(1): 26-49.
    [8]
    [9]
    [10] Larry Edward Hawe. Control of a fast steering mirror for laser based satellite communication[D]. Boston: Massachusetts Institute of Technology, 2006.
    [11] Daniel Joseph Kluk. An advanced fast steering mirror for optical communication[D]. Boston: Massachusetts Institute of Technology, 2007.
    [12]
    [13] Alexander J W. Pointing and tracking concepts for deep space missions[C]//SPIE, 1999, 3615: 230-249.
    [14]
    [15]
    [16] Guelman M. Acquisition and pointing controls for inter-satellite laser communications[J]. IEEE Transacations on Aerospace and Electronics Systems, 2004, 40(4): 496-500.
    [17] Fujine M. Current and future actirles in the area of optical communications in Japan[C]//SPIE, 1991, 1522: 14-26.
    [18]
    [19]
    [20] Ma Jiaguang. The basic technologies of the acquisition, tracking and pointing systems[J]. Opto-Electronic Engineering, 1989, 16(3): 1-42. (in Chinese)
    [21] Li Shengliang. Compound axis servo system in opto-electronic precision tracking[J]. Optics and Precision Engineering, 1980, 20(2): 50-56. (in Chinese)
    [22]
    [23] Peng Xujun. The research and experiments of compoundaxis control system in opto-electronic accurate tracking[J]. Opto-Electronic Engineering, 1994, 23(5): 1-4. (in Chinese)
    [24]
    [25]
    [26] Ren Ge, Ma Jiaguang. Experiment system of a fast steering mirror[C]//SPIE, 1994, 2221: 464-474.
    [27]
    [28] Ren Ge. An analysis of kinematic relationship for compound-axis structure [J]. Opto-Electronic Engineering, 1995, 6:41-46. (in Chinese)
    [29] Wang Yi. Dual compound axis servo system of opto-electronic precision tracking[J]. Optics and Precision Engineering, 1996, 26(4): 58-61. (in Chinese)
    [30]
    [31]
    [32] Fu Chengyu. The application research of the composite axis control system[J]. Opto-Electronic Engineering, 1998, 23(4): 1-12. (in Chinese)
    [33]
    [34] Liu Tingxia. The research of compound-axis servo control technique of o-e tracking system [D]. Beijing: University of Chinese Academy of Sciences, 2005. (in Chinese)
    [35]
    [36] Li Wenjun. Study on control strategy of o-e tracking systems with compound axis[D]. Beijing: University of Chinese Academy of Sciences, 2006. (in Chinese)
    [37] Wang Qiang. Single detector compound axis control based on realtime predicted trajectory correcting method [J]. Opto-Electronic Engineering, 2007, 34(4): 17-21.
    [38]
    [39]
    [40] Dong Hao. An equivalent compound control based on a suppositional compound-axis system[J]. Journal of Harbin Engineering University, 2011, 32(3): 309-313. (in Chinese)
    [41]
    [42] Dong Hao. Twice tracking control on opto-electric tracking servo system[J]. Science Technology and Engineering, 2011, 11(16): 3688-3702. (in Chinese)
    [43]
    [44] Wang Yonghui. Research on structure design of fast-steering mirror and its dynamic characteristics[D]. Beijing: University of Chinese Academy of Sciences, 2006.
    [45] Lu Yafei. Design of two-axis elastic support for fast steering mirror [J]. Optics and Precision Engineering, 2010, 18(12):2574-2582. (in Chinese)
    [46]
    [47] Xu Xinxing. Research on mechanical structure of fast-steering mirror driven by voice coil actuators [J]. Journal of Changchun University of Science and Technology, 2011, 34(1): 49-52. (in Chinese)
    [48]
    [49] Hu Haojun. Transfer function identification in a fast steering mirror system [J]. Opto-Electronic Engineering, 2005, 32(7): 1-10. (in Chinese)
    [50]
    [51] Wu Qiongyan. Wide bandwidth control of fast-steering mirror driven by voice coil motor [J]. Opto-Electronic Engineering, 2004, 31(8): 15-18. (in Chinese)
    [52]
    [53] Tang Tao, Huang Yongmei, Fu Chenyu, et al. Acceleration feedback of a CCD-based tracking loop for fast steering mirror [J]. Optical Engineering, 2009, 48(1): 1-6.
    [54]
    [55] Tang Tao. Compensating for some errors related to time delay in a charge-coupled-device- based fast steering mirror control system using a feed forward loop [J]. Optical Engineering, 2010, 49(7): 1-7.
    [56]
    [57] Tang Tao. PID-I controller of CCD- based tracking loop for fast steeling mirror [J]. Optical Engineering, 2011, 50(4): 1-4.
    [58]
    [59] Liu Ming. Research of model and control for fast-steering mirrors [J]. Optical Technique, 2008, 34(2): 227-232. (in Chinese)
    [60]
    [61] Rao Changhui. 61-element adaptive optical system for 1.2 m telescope of Yunnan observatory [J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 295-302. (in Chinese)
    [62]
    [63] Wu Bilin. Performance analysis of tracking loop of high precision for adaptive optical system [J]. Opto-Electronic Engineering, 2006, 33(6): 1-9. (in Chinese)
    [64]
    [65] Song Yansong. Variable structure control technology of the fine tracking assembly in airborne laser communication system [J]. Infrared and Laser Engineering, 2010, 36(5):934-938. (in Chinese)
    [66]
    [67] Hu Zhen. Research on ATP system technology of laser communication terminal in space [J]. Acta Armamentarii, 2011, 32(6): 752-757. (in Chinese)
    [68]
    [69]
    [70] Guo Lidong. Compound-axis macro-micro control and modeling of laser weapon tracking system [J]. Journal of Jilin University, 2011, 43(3): 859-864. (in Chinese)
    [71]
    [72] Nie Guangsu. Study of capability and error restraint ability of optical inter-satellite communications compound axis tracking structure [J]. Journal of Air Force Engineering University, 2011, 12(2): 47-51. (in Chinese)
    [73]
    [74] Ma Jiaguang. Principles and applications of combined control and equivalent combined control [J]. Opto-Electronic Engineering, 1988, 10(5): 1-16.
    [75]
    [76] Huang Yongmei. Simulation for the application of prediction filtering technique in photoelectric theodolite [J]. Opto-Electronic Engineering, 2002, 29(4): 5-9. (in Chinese)
    [77] Huang Yongmei. Application of forecast of moving target velocity in electro-optical tracking control system [J]. Infrared and Laser Engineering, 2004, 33(5): 477-481. (in Chinese)
    [78]
    [79]
    [80] Huang Yongmei. Kalman filter compensation method for delay of tracking sensor in servo system [J]. Opto-Electronic Engineering, 2006, 50(6): 4-9.
    [81] Li X R, Jilkov V P. A survey of maneuvering target tracking: dynamic models [C]//SPIE, 2000, 4048: 212235.
    [82]
    [83]
    [84] Li R, Jilkov V P. A survey of maneuvering target tracking-part II: ballistic target models [C]//SPIE, 2001, 4473: 559-581.
    [85]
    [86] Ding Ke. Composite control of fast-steering-mirror for beam jitter [J]. Optics and Precision Engineering, 2011, 19(9): 1991-1998. (in Chinese)
    [87] Ding Ke. Error adaptive feedforward composite control of fast-steering-mirror [J]. Chinese Journal of Lasers, 2011, 38(7): 1-7. (in Chinese)
  • [1] 朱伟鸿, 汪洋, 王栎皓, 刘艺晨, 武震宇.  卫星激光通信MEMS快速反射镜可靠性研究进展 . 红外与激光工程, 2023, 52(9): 20230179-1-20230179-13. doi: 10.3788/IRLA20230179
    [2] 吴松航, 董吉洪, 徐抒岩, 于夫男, 许博谦.  快速反射镜椭圆弧柔性铰链多目标优化设计 . 红外与激光工程, 2021, 50(4): 20200286-1-20200286-9. doi: 10.3788/IRLA20200286
    [3] 方连伟, 史守峡, 蒋志勇.  柔性支撑快速反射镜伺服机构的参数辨识 . 红外与激光工程, 2021, 50(5): 20200303-1-20200303-11. doi: 10.3788/IRLA20200303
    [4] 赵磊, 柳秋兴, 胡博, 王虎, 梁亮, 卢恒.  单轴半蝶形柔性铰链在快速反射镜中的设计与应用 . 红外与激光工程, 2021, 50(10): 20210118-1-20210118-10. doi: 10.3788/IRLA20210118
    [5] 艾志伟, 嵇建波, 王鹏举, 李静, 周皓阳.  两轴柔性支承快速反射镜结构控制一体化设计 . 红外与激光工程, 2020, 49(7): 20190479-1-20190479-8. doi: 10.3788/IRLA20190479
    [6] 汪奎, 辛宏伟, 徐宏, 任天赐.  空间相机快速反射镜的结构轻量化设计 . 红外与激光工程, 2019, 48(4): 418001-0418001(7). doi: 10.3788/IRLA201948.0418001
    [7] 赵磊, 纪明, 王佳, 赵振海, 王虎.  万向柔性铰链连接快速反射镜的设计与仿真 . 红外与激光工程, 2019, 48(2): 218002-0218002(7). doi: 10.3788/IRLA201948.0218002
    [8] 汪奎, 辛宏伟, 曹乃亮, 石震.  空间相机快速反射镜的两轴柔性支撑结构设计 . 红外与激光工程, 2019, 48(12): 1214005-1214005(8). doi: 10.3788/IRLA201948.1214005
    [9] 陶俊明, 刘军, 李治国, 李昕, 程志远.  反作用轮实现微纳卫星光电跟踪物理仿真 . 红外与激光工程, 2019, 48(10): 1013003-1013003(8). doi: 10.3788/IRLA201948.1013003
    [10] 王凯迪, 苏秀琴, 李哲, 吴少博.  像移补偿快速反射镜时频特性优化控制 . 红外与激光工程, 2018, 47(S1): 112-118. doi: 10.3788/IRLA201847.S120003
    [11] 吕世良, 刘金国, 周怀得, 梅贵.  星载红外探测器快速反射镜控制系统设计 . 红外与激光工程, 2017, 46(9): 904005-0904005(6). doi: 10.3788/IRLA201746.0904005
    [12] 王婉婷, 郭劲, 姜振华, 王挺峰.  光电跟踪自抗扰控制技术研究 . 红外与激光工程, 2017, 46(2): 217003-0217003(8). doi: 10.3788/IRLA201746.0217003
    [13] 方楚, 郭劲, 徐新行, 姜振华, 王挺峰.  适用于FSM系统的菱形微位移放大机构设计 . 红外与激光工程, 2016, 45(10): 1018004-1018004(7). doi: 10.3788/IRLA201645.1018004
    [14] 程龙, 陈娟, 陈茂胜, 徐婧, 王卫兵, 王挺峰, 郭劲.  光电跟踪伺服系统的自适应差分进化算法辨识 . 红外与激光工程, 2016, 45(7): 731002-0731002(7). doi: 10.3788/IRLA201645.0731002
    [15] 鄢南兴, 林喆, 谭爽.  基于PQ法的惯性/光机复合指向控制方法 . 红外与激光工程, 2016, 45(3): 331001-0331001(6). doi: 10.3788/IRLA201645.0331001
    [16] 刘小强, 任高辉, 邢军智, 寿少峻, 张惠菁.  交互式多模型算法在光电跟踪控制系统中应用的仿真 . 红外与激光工程, 2016, 45(9): 917003-0917003(7). doi: 10.3788/IRLA201645.0917003
    [17] 岳玉芳, 谢晓钢, 安建祝.  基于EasyLaser的复合轴跟踪系统仿真研究 . 红外与激光工程, 2016, 45(S1): 138-145. doi: 10.3788/IRLA201645.S118002
    [18] 方楚, 郭劲, 徐新行, 王挺峰.  压电陶瓷驱动FSM三自由度柔性支撑设计 . 红外与激光工程, 2015, 44(10): 2987-2994.
    [19] 胥青青, 刘伟, 纪明, 杨光, 尹明东, 李红光.  远程红外探测系统瞄准线高精度稳定技术 . 红外与激光工程, 2014, 43(11): 3646-3650.
    [20] 彭树萍, 于洪君, 王伟国, 刘廷霞, 周子云.  新型快速反射镜伺服系统设计 . 红外与激光工程, 2014, 43(5): 1610-1615.
  • 加载中
计量
  • 文章访问数:  394
  • HTML全文浏览量:  67
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-22
  • 修回日期:  2012-06-19
  • 刊出日期:  2013-01-25

复合轴精密跟踪技术的应用与发展

    作者简介:

    马佳光(1941-),男,研究员,博士生导师,主要研究领域为光电测量和光束控制技术。Email:mjg@ioe.ac.cn

基金项目:

国家863项目

  • 中图分类号: TP273

摘要: 复合轴是双通道控制的一种实现结构,可大幅度提高光电跟踪系统的跟踪精度和响应频率,在光电跟踪观测、激光通讯和光束稳定控制中有着广泛应用。在高精度跟踪控制领域,复合轴控制技术是实现微弧度角秒级甚至亚微弧度非常有效的手段。文中介绍了复合轴跟踪系统的基本原理和主要技术问题。在复合轴控制系统中,主轴、子轴的控制带宽匹配是实现复合轴控制技术的前提,子轴(快速反射镜)的精度是复合轴精度的制约。重点分析了复合轴跟踪系统近年的发展与技术进步,如多重复合轴、虚拟复合轴以及自适应光学和复合控制等技术在复合轴系统中的应用等。

English Abstract

参考文献 (87)

目录

    /

    返回文章
    返回