留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间高光谱成像仪的光学设计

巩盾 王红

巩盾, 王红. 空间高光谱成像仪的光学设计[J]. 红外与激光工程, 2014, 43(2): 541-545.
引用本文: 巩盾, 王红. 空间高光谱成像仪的光学设计[J]. 红外与激光工程, 2014, 43(2): 541-545.
Gong Dun, Wang Hong. Optical design of hyperspectral imaging spectrometer on space[J]. Infrared and Laser Engineering, 2014, 43(2): 541-545.
Citation: Gong Dun, Wang Hong. Optical design of hyperspectral imaging spectrometer on space[J]. Infrared and Laser Engineering, 2014, 43(2): 541-545.

空间高光谱成像仪的光学设计

基金项目: 

国家自然科学基金(60507003)

详细信息
    作者简介:

    巩盾(1982- ),男,博士,副研究员,主要从事光学设计、光谱成像系统设计等方面的研究。Email:gongdun@sina.com

  • 中图分类号: V248.3

Optical design of hyperspectral imaging spectrometer on space

  • 摘要: 空间高光谱成像仪是现代空间遥感器的新型载荷,设计的空间高光谱成像仪光学系统由前置望远系统和光谱成像系统两部分组成,对前置望远系统和光谱成像系统分别设计,再进行组合优化。前置望远系统采用离轴三反结构,在增大幅宽、提高成像质量的同时减小高光谱成像仪光学系统的畸变。为了保证光学系统结构的紧凑,前置望远系统采用视场分离的方式设计,进一步提高了光学系统的分辨率。凸面光栅是现代光栅刻划技术的最新成果,光谱成像系统采用次镜为凸面光栅的Offner光栅光谱仪,实现了光谱成像系统的高分辨率与小型化。组合优化后的高光谱成像仪光学系统幅宽大、体积小、成像质量好、光谱分辨率高、光谱通道数多,全视场全谱段MTF在Nyquist频率下高于0.7,成像弥散圆80%的能量集中在15 m范围内,小于探测器18 m的像元尺寸,均高于系统技术指标要求。
  • [1] Yang Xinjun, Wang Zhaoqi, Mu Guoguang. Design of hybrid refractive/diffractive off-axial optical system for multispectral infrared imaging spectrometer[J]. Infrared and Laser Engineering, 2005, 34(4): 379-383. (in Chinese)
    [2]
    [3] Xu Hong, Wang Xiangjun. Applications of multispectral/hyperspectral imaging technologies in military[J]. Infrared and Laser Engineering, 2007, 36(1): 13-17. (in Chinese)
    [4]
    [5] Yuan Liyin, Lin Ying, He Zhiping, et al. Design and realization of an long-wave infrared hyperspectral imaging system[J]. Infrared and Laser Engineering, 2011, 40(2): 181-185. (in Chinese)
    [6]
    [7]
    [8] Han Pengpeng. Research of concentric optical systems of imaging spectrometers[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(2): 157-161. (in Chinese)
    [9] Ji Yiqun, Gong Guangbiao, Zhu Shanbing, et al. Minimal integrated hyperspectral imaging system[J]. Optics and Precision Engineering, 2009, 17(4): 727-731. (in Chinese)
    [10]
    [11] Wang Jiaqi. Total design of Optical Instrument[M]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, 1998: 3-5. (in Chinese)
    [12]
    [13] Zhang Y M. Applied Optics[M]. Beijing: Machine and Industry Publishing Company, 1987: 375-378. (in Chinese)
    [14]
    [15] Malacara D. Optical Shop Testing[M]. New Jersey: John Wiley Sons, Inc., 1978.
    [16]
    [17]
    [18] Ji Yiqun, Shen Weimin. Design and manufacture of Offner convex grating hyperspectral imager[J]. Infrared and Laser Engineering, 2010, 39(2): 285-287. (in Chinese)
    [19] Tong Yajun, Wu Gang, Zhou Quan, et al. Design method of Offner-type imaging spectrometer[J]. Acta Optica Sinica, 2010, 30(4): 1148-1152. (in Chinese)
  • [1] 许宁晏, 高志山, 陈露, 黄静, 邹宇通, 袁群.  应用自由曲面的紧凑型长焦手机镜头设计(特邀) . 红外与激光工程, 2023, 52(7): 20230322-1-20230322-10. doi: 10.3788/IRLA20230322
    [2] 袁健, 张雷.  大型离轴三反相机主镜组件结构设计与验证 . 红外与激光工程, 2023, 52(1): 20220363-1-20220363-10. doi: 10.3788/IRLA20220363
    [3] 王合龙, 陈建发, 黄浩阳, 崔泽曜.  基于自由曲面的离轴三反光学系统研制 . 红外与激光工程, 2023, 52(3): 20220523-1-20220523-8. doi: 10.3788/IRLA20220523
    [4] 钱壮, 莫言, 樊润东, 谈昊, 冀慧茹, 马冬林.  制冷型大面阵自由曲面离轴三反光学系统设计(特邀) . 红外与激光工程, 2023, 52(7): 20230339-1-20230339-9. doi: 10.3788/IRLA20230339
    [5] 张刘, 李博楠, 卢勇男, 邹阳阳, 王泰雷.  基于Offner凸面光栅星载CO2成像光谱仪光学系统设计 . 红外与激光工程, 2022, 51(7): 20220431-1-20220431-9. doi: 10.3788/IRLA20220431
    [6] 张鹏泉, 陈佳琪, 史屹君.  离轴三反光学系统中反射膜的研制 . 红外与激光工程, 2022, 51(9): 20210900-1-20210900-5. doi: 10.3788/IRLA20210900
    [7] 王晓艳, 徐高魁.  高隔离度激光通信终端光学系统设计 . 红外与激光工程, 2021, 50(7): 20200521-1-20200521-5. doi: 10.3788/IRLA20200521
    [8] 常凌颖, 张强, 邱跃洪, 张荣.  宽光谱实入瞳远心中继光学系统设计 . 红外与激光工程, 2021, 50(10): 20210091-1-20210091-7. doi: 10.3788/IRLA20210091
    [9] 凌明椿, 宋茂新, 洪津, 孙晓兵, 陶菲.  离轴三反同时偏振成像仪光机设计 . 红外与激光工程, 2019, 48(5): 518001-0518001(10). doi: 10.3788/IRLA201948.0518001
    [10] 赵宇宸, 何欣, 张凯, 刘强, 崔永鹏, 孟庆宇.  轻小型大视场自由曲面离轴光学系统设计 . 红外与激光工程, 2018, 47(12): 1218001-1218001(7). doi: 10.3788/IRLA201847.1218001
    [11] 张营, 丁学专, 杨波, 张宗存, 刘银年.  三分离式消热差制冷型中红外物镜的设计 . 红外与激光工程, 2016, 45(4): 418005-0418005(6). doi: 10.3788/IRLA201645.0418005
    [12] 侯佳, 何志平, 舒嵘.  离轴三反光纤阵列激光三维成像发射系统 . 红外与激光工程, 2016, 45(4): 406001-0406001(5). doi: 10.3788/IRLA201645.0406001
    [13] 孟庆宇, 汪洪源, 王严, 纪振华, 王栋.  大线视场自由曲面离轴三反光学系统设计 . 红外与激光工程, 2016, 45(10): 1018002-1018002(8). doi: 10.3788/IRLA201645.1018002
    [14] 李永昌, 金龙旭, 武奕楠, 王文华, 吕增明, 韩双丽.  离轴三反大视场空间相机像移速度场模型 . 红外与激光工程, 2016, 45(5): 513001-0513001(7). doi: 10.3788/IRLA201645.0513001
    [15] 王蕴琦, 刘伟奇, 张大亮, 孟祥翔, 康玉思, 魏忠伦.  基于传递矩阵的宽视场离轴三反光学系统设计 . 红外与激光工程, 2016, 45(4): 418003-0418003(6). doi: 10.3788/IRLA201645.0418003
    [16] 杨宇飞, 颜昌翔.  长焦距宽视场离轴三反光管设计 . 红外与激光工程, 2015, 44(7): 2070-2074.
    [17] 郭永祥, 李永强, 廖志波, 王静怡.  新型离轴三反射光学系统设计 . 红外与激光工程, 2014, 43(2): 546-550.
    [18] 闫兴涛, 杨建峰, 薛彬, 马小龙, 赵意意, 卜凡.  Offner型成像光谱仪前置光学系统设计 . 红外与激光工程, 2013, 42(10): 2712-2717.
    [19] 庞志海, 樊学武, 邹刚毅, 赵惠.  新型大视场无遮拦三反光学系统设计 . 红外与激光工程, 2013, 42(9): 2449-2452.
    [20] 明名, 杨飞, 赵金宇, 张丽敏, 吴小霞.  折反式大口径、大视场、宽光谱光学系统 . 红外与激光工程, 2012, 41(1): 149-154.
  • 加载中
计量
  • 文章访问数:  396
  • HTML全文浏览量:  60
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-13
  • 修回日期:  2013-07-03
  • 刊出日期:  2014-02-25

空间高光谱成像仪的光学设计

    作者简介:

    巩盾(1982- ),男,博士,副研究员,主要从事光学设计、光谱成像系统设计等方面的研究。Email:gongdun@sina.com

基金项目:

国家自然科学基金(60507003)

  • 中图分类号: V248.3

摘要: 空间高光谱成像仪是现代空间遥感器的新型载荷,设计的空间高光谱成像仪光学系统由前置望远系统和光谱成像系统两部分组成,对前置望远系统和光谱成像系统分别设计,再进行组合优化。前置望远系统采用离轴三反结构,在增大幅宽、提高成像质量的同时减小高光谱成像仪光学系统的畸变。为了保证光学系统结构的紧凑,前置望远系统采用视场分离的方式设计,进一步提高了光学系统的分辨率。凸面光栅是现代光栅刻划技术的最新成果,光谱成像系统采用次镜为凸面光栅的Offner光栅光谱仪,实现了光谱成像系统的高分辨率与小型化。组合优化后的高光谱成像仪光学系统幅宽大、体积小、成像质量好、光谱分辨率高、光谱通道数多,全视场全谱段MTF在Nyquist频率下高于0.7,成像弥散圆80%的能量集中在15 m范围内,小于探测器18 m的像元尺寸,均高于系统技术指标要求。

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回