留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

THz波大气探测仪器发展现状研究

高太长 李书磊 刘磊 黄威

高太长, 李书磊, 刘磊, 黄威. THz波大气探测仪器发展现状研究[J]. 红外与激光工程, 2016, 45(4): 425002-0425002(12). doi: 10.3788/IRLA201645.0425002
引用本文: 高太长, 李书磊, 刘磊, 黄威. THz波大气探测仪器发展现状研究[J]. 红外与激光工程, 2016, 45(4): 425002-0425002(12). doi: 10.3788/IRLA201645.0425002
Gao Taichang, Li Shulei, Liu Lei, Huang Wei. Development study of THz instruments for atmospheric sounding[J]. Infrared and Laser Engineering, 2016, 45(4): 425002-0425002(12). doi: 10.3788/IRLA201645.0425002
Citation: Gao Taichang, Li Shulei, Liu Lei, Huang Wei. Development study of THz instruments for atmospheric sounding[J]. Infrared and Laser Engineering, 2016, 45(4): 425002-0425002(12). doi: 10.3788/IRLA201645.0425002

THz波大气探测仪器发展现状研究

doi: 10.3788/IRLA201645.0425002
基金项目: 

国家自然科学基金(41205125,41575024)

详细信息
    作者简介:

    高太长(1958-),男,教授,博士生导师,主要从事大气探测与大气遥感方面的研究。Email:2009gaotc@gmail.com

  • 中图分类号: P412

Development study of THz instruments for atmospheric sounding

  • 摘要: THz波在电磁波谱中位于微波至红外波段的过渡区域,其特性在空间研究及应用领域具有独特的优势,THz频段的大气遥感仪器可以为探测地球大气信息提供全新的视角,在大气科学领域展现出良好的应用前景。介绍了THz技术在大气探测领域的主要应用,综述了国内外THz频段的大气观测仪器的研究现状,通过各仪器关键指标参数的对比分析,总结了THz大气观测仪器的发展趋势及发展前景,并提出了发展THz大气遥感技术的建议。
  • [1] Peter H Siegel. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):910-928.
    [2] Yao Jianquan, Wang Jingli, Zhong Kai, et al. Study and outlook of THz radiation atmospheric propagation[J]. Journal of OptoelectronicsLaser, 2010, 21(10):1582-1588. (in Chinese)姚建铨, 汪静丽, 钟凯, 等. THz辐射大气传输研究和展望[J]. 光电子激光, 2010, 21(10):1582-1588.
    [3] Peter H Siegel. Terahertz pioneers:a series of interviews with significant contributors to terahertz science and technology[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4):409.
    [4] Jana Mendrok, Dong L Wu, Stefan A Buhler, et al. Sub-millimeter wave radiometer for observation of cloudice-aproposal for Japanese mission[C]//Sensors, Systems, and Next-Generation Satellites XIII SPIE, 2009, 7474:74740T.
    [5] Paul B Hays, Hilary E Snell. Atmospheric remote sensing in the terahertz region[C]//First International Symposium on Space Terahertz Technology, 1990:482-491.
    [6] Cathy Clerbaux, Solene Turquety, Pierre Coheur. Infrared remote sensing of atmospheric composition and air quality:towards operational applications[J]. Comptes Rendus Geoscience, 2010, 342(4):349-356.
    [7] Paulo Pampaloni, S Paloscia. Microwave Radiometry and Remote Sensing of the Earth's Surface and Atmosphere[M]. Netherlands:VSP, 2000:263-282.
    [8] Yang P, Liou K N, Bi L, et al. On the radiative properties of ice clouds:Light scattering, remote sensing, and radiation parameterization[J]. Adv Atmos Sci, 2015, 32(1):32-63.
    [9] Michael A Lefsky, Warren B Cohen, Geoffrey G Parker, et al. Lidar remote sensing for ecosystem studies[J]. Bioscience, 2002, 52(1):19-30.
    [10] Klein U. Future satellite earth observation requirements and technology in millimetre and sub-millimetre wavelength region[C]//The 17th Int Symp on Space THz Technology, 2006:21-28.
    [11] Peter H Siegel. THz instruments for space[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11):2957-2965.
    [12] Peter H Siegel. THz for space:the golden age[J]. IEEE Xplore, 2010, 978(1):816-819.
    [13] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2013, 130:4-50.
    [14] Podobedov V B, Plusquellic D F, Siegrist K E, et al. New measurements of the water vapor continuum in the regionfrom 0.3 to 2.7 THz[J]. Journal of Quantitative Spectroscopy Radiative Transfer, 2008, 109:458-467.
    [15] David M Slocum, Thomas M Goyette, Elizabeth J Slingerland, et al. Terahertz atmospheric attenuation and continuum effects[C]//SPIE DSS Conference, 2013, 8716:871607-1-871607-14.
    [16] David M Slocum, Thomas M Goyette, Robert H Giles. High-resolution terahertz atmospheric water vapor continuum measurements[C]//Terahertz Physics, Devices, and Systems VIII:Advanced Applications in Industry and Defense, 2014, 9102:91020E.
    [17] Kasai Yasuko. Terahertz-wave remote sensing:introduction to terahertz-wave remotesensing[J]. Journal of the National Institute of Information and Communications Technology, 2008, 55(1):79-81.
    [18] Kasai Yasuko, Ochiai Satoshi, Mendrok Jana, et al. THz remote sensing for water vapor and cloud observation[C]//37th COSPAR Scientific Assembly, 2008:1456-1463.
    [19] Blackwell W J, Staelin D H. Comparative performance analysis of passive microwave systems for tropospheric sounding of temperature and water vapor profiles[C]//Proceedings of SPIE, 1996, 2812:472-478.
    [20] Cho H-M, Zhang Z, Meyer K, et al. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans[J]. J Geophys Res Atmos, 2015, 120(9):4132-4154.
    [21] Vidot J, Baran A J, Brunel P. A new ice cloud parameterization for infrared radiative transfer simulation of cloudy radiances:evaluation and optimization with IIR observations and ice cloud profile retrieval products[J]. J Geophys Res Atmos, 2015, 120(14):6937-6951.
    [22] Gong J, Wu D L. CloudSat-constrained cloud ice water path and cloud top height retrievals from MHS 157 and 183.3 GHz radiances[J]. Atmospheric Measurement Techniques, 2014, 7(6):1873-1890.
    [23] Jana Mendrok, Philippe Baron, Yasuko Kasaia. Studying the potential of terahertz radiation for deriving ice cloud microphysical information[C]//Remote Sensing of Clouds and the Atmosphere XIII, 2008, 7107:710704.
    [24] De Lucia F C, Petkie D T. THz gas sensing with submillimetertechniques[C]//SPIE, 2005, 5790:44-53.
    [25] De Lucia F C, Petkie D T. The physics and chemistry of THz sensors and imagers:long-standing applications, new opportunities, and pitfalls[C]//SPIE, 2005, 5989:598911.
    [26] Jacobsen R H, Mittleman D M, Nuss M C. Gas sensing using terahertz time-domain spectroscopy[J]. Opt Lett, 1996, 21(24):2011-2013.
    [27] Alexander Kellarev, Dan Sheffer. Terahertz remote sensing[C]//Terahertz Physics, Devices, and Systems V:Advance Applications in Industry and Defense, 2011:80230N.
    [28] Phillips T G, Keene J C. Submillimeter astronomy[C]//IEEE, 1992, 80(11):1662-1678.
    [29] Salomonovich A E, Solomonov S V, KhaikinA S, et al. Satellite measurements of submillimetre radiation of the earth's atmosphere[C]//Space research XVI:Proceedings of the Open Meetings of Working Groups on Physical Sciences and Symposium and Workshop on Results from Coordinated Upper Atmosphere Measurement Programs, 1976:155-159.
    [30] Salomonovich A E, Bakun V N, Kovalev V S, et al. A submillimeter telescope for the orbitalpiloted station Salyut-6[J]. Telecomm Radio Eng, 1979, 34(2):82-88.
    [31] Wilheit T T, A Al-Khalaf. A simplified interpretation of the radiances from the SSM/T-2[J]. Meteorology and Atmospheric Physics, 1994, 54(1):203-212.
    [32] Galin I, Brest D H, Martner G R. The DMSP SSMT/2microwave water-vapor profiler[C]//SPIE OE/Aerospace and RemoteSensing Int Symp, 1993.
    [33] Byung-Ju Sohn, Eui-Seok Chung, Johannes Schmetz, et al. Estimating upper-tropospheric water vapor from SSM/T-2 satellite measurements[J]. J Appl Meteor, 2003, 42:488-504.
    [34] Waters J W, Read W G, Froidevaux L, et al. The UARS and EOS microwave limb sounder (MLS) experiments[J]. Journal of the Atmospheric Sciences, 1998. 56:194-218.
    [35] Joe W Waters, Gordon E Peckham. The microwave limb sounder(MLS) experiments for UARS and EOS[J]. The International Society for Optical Engineering, 1991:543-546.
    [36] Hugh C Pumphrey, Hannah L Clark, Robert S Harwood. Lower stratospheric water vapor measured by UARS MLS[J]. Geophysical Research Letters, 2000, 27(12):1691-1694.
    [37] Barath F T, Chavez M C, Cofield R E, et al. The upper atmosphere research satellite microwave limb sounder instrument[J]. J Geophys Res, 1993, 98(10):751-762.
    [38] Neugebauer G, Habing H J, van Duinen R, et al. The infrared astronomical satellite(IRAS) mission[J]. Astrophys J, 1984, 278(2):L1-L6.
    [39] Murtagh Donal, Frisk Urban, Merino Frank, et al. An overview of the Odin atmospheric mission[J]. Canadian Journal of Physics, 2002, 80(4):357-368.
    [40] Ph Baron, Ph Ricaud, J de la No, et al. Studies for the Odin sub-millimetre radiometer. II:Retrieval methodology[J]. Canadian Journal of Physics, 2002, 80(4):341-356.
    [41] Urban J, Lautie N, Le Flochmoez E, et al. Odin/SMR limb observations of stratospheric trace gases:Validation of N2O[J]. Journal of Geophysical Research, 2005, 110:D09301-D09320.
    [42] Mark R Schoeberl, Anne R Douglass, Ernest Hilsenrath, et al. Overview of the EOS Aura mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1066-1074.
    [43] Krotkov N A, McLinden C A, Li C, et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2014[J]. Atmos Chem Phys Discuss, 2015, 15:26555-26607.
    [44] Pickett H M. Microwave limb sounder THz module on Aura[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5):1122-1130.
    [45] Gaidis M C, Pickett H M, Smith C D, et al. A 2.5 THz receiver front-end for spaceborne applications[J]. IEEE Transactions on Microwave Theory Techniques, 2000, MTT-48(4):733-739.
    [46] Junji Inatani, Hiroyuki Ozeki, Ryouta Satoh, et al. Submillimeter limb-emission sounder JEM/SMILES aboard the Space Station[C]//Microwave Remote Sensing of the Atmosphere and Environment II, 2000, 4152:243.
    [47] Seta M, Masuko H, Manabe T, et al. Submillimeter-wave SIS receiver for JEM/SMILES[J]. Adv Space Res, 2000, 26(6):1021-1024.
    [48] Sagawa H, Sato T O, Baron P, et al. Comparison of SMILES ClO profiles with satellite, balloon-borneand ground-based measurements[J]. Atmos Meas Tech, 2013, 6:3325-3347.
    [49] Fujii Y, Kikuchi K, Inatani J, et al. Space-borne 640-GHz receiver based on 4-K mechanicalcooler[J]. Astronomical Telescopes and Instrumentation, 2000, 4013:90-99.
    [50] Perrin A, Puzzarini C, Colmont J M, et al. Molecular line parameters for the MASTER (Millimeter Wave Acquisitions for Stratosphere/Troposphere Exchange Research) database[J]. Journal of Atmospheric Chemistry, 2005, 51(2):161-205.
    [51] Matthew Oldfield, Brian P Moyna, Elie Allouis, et al. MARSCHALS:development of an airborne millimeter-wave limb sounder[C]//Sensors, Systems, and Next-Generation Satellites V, 2001, 4540:450663.
    [52] Eric Defer, Carlos Jimenez, Catherine Prigent. Sub-millimetre wave radiometry for cloud and rain characterization:from simulation to Earth observation mission concept[J]. C R Pyhsique, 2011, 10:1016-1023.
    [53] Joe K Taylor, Henry E Revercomb, Fred A Best, et al. The infrared cloud Ice radiometer (IRCIR)[C]//Infrared Technology and Applications XXXIII, 2007, 6542:65423H.
    [54] L'Ecuyer, Tristan S, Greenwald T, et al. Information content analysis in supportof a new infrared cloud ice radiometer for SIRICE[C]//Conference on Satellite Meteorology and Oceanography, 2006.
    [55] Buehler S A, Jimenez C, Evans K F, et al. A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(S2):109-128.
    [56] Zhao Haibo, Zheng Cheng, Zhang Yongfang, et al. Information content analysis for the millimeter and sub-millimeter wave atmospheric sounding data from geostationary orbit[J]. Progress in Electromagnetics Research M, 2014, 35:183-191.
    [57] Buehler S A, Defer E, Evans F, et al. Observing ice clouds in the submillimeter spectral range:the Cloud Ice mission proposal for ESA's Earth Explorer 8[J]. Atmos Meas Tech, 2012, 5:1529-1549.
    [58] Brian Moyna, Clare Lee, Janet Charlton, et al. ISMAR:towards a submillimetre-wave airborne demonstrator for the observation ofprecipitation and ice clouds[C]//Twenty-First International Symposium on Space Terahertz Technology 2010:185.
    [59] Winnewisser G. Submillimeter wave spectroscopy in astronomy related to the ESA-project FIRST(Far InfraRed Submillimetre space Telescope)[C]//SPIE, 1986, 598:2-7.
    [60] Wellard S, Bingham G, Latvakoski H, et al. Far-infrared spectroscopy of the troposphere(FIRST):flight performance and data processing[J]. Infrared Spaceborne Remote Sensing XIV, 2006, 6297:62970Q.
    [61] Gert de Lange, Manfred Birk, Dick Boersma, et al. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder[J]. Supercond Sci Technol, 2010, 23(4):45016-45023.
    [62] Fuerholz P, Murk A. Phase-corrected near-fieldmeasurements of the TELIS telescope at 637 GHz[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9):2518-2525.
    [63] Suttiwong N, Birk M, Stefan B. Development and characterization of the balloon-borne instrument TELIS (TErahertz and Submm Limb Sounder):1.8 THz receiver[C]//Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programsand Related Research, 2009:165-168.
    [64] Xu J, Schreier F, Vogt P, et al. A sensitivity study for far infrared balloon-borne limb emission sounding of stratospheric trace gases[J]. Geosci Instrum Method Data Syst Discuss, 2013, 3:251-303.
    [65] Evans K F, Walter S J, Heymsfield A J, et al. The submillimeter-wave cloud ice radiometer (SWCIR):Simulations of retrieval algorithm performance[J]. Journal of Geophysical Research-Atmospheres, 2002, 107:4028-4052.
    [66] Franklin Evans K, Steven J Walter, Andrew J Heymsfield, et al. Submillimeter-wave cloud ice radiometer:simulations of retrieval algorithm performance[J]. Journal of Geophysical Research, 2002, 107(D3):4028-4048.
    [67] Vanek M D, Nolt I G, Tappan N D, et al. Far-infrared sensor for cirrus(FIRSC):an aircraft-based Fourier-transform spectrometer to measure cloud radiance[J]. Appl Opt, 2001, 40(13):2169-2176.
    [68] Melnick G J, Dalgarno A, Fazio N R, et al. The submillimeter wave astronomy satellite:Science objectives and instrument description[J]. Astrophys J Lett, 2000, 539(2):L77-L85.
    [69] Evans K F, Wang J R, Starr D O'C, et al. Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers:application to the CoSSIR instrument during TC4[J]. Atmospheric Measurement Techniques, 2012, 5:2277-2306.
    [70] Evans K F, Wang J R, Racette P E, et al. Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE[J]. American Meteorological Society, 2005, 44:839-859.
    [71] Miao J, Johnsen K-P, Buehler S, et al. The potential of polarization measurements from space at mm andsub-mm wavelengths for determining cirrus cloud parameters[J]. Atmos Chem Phys, 2003, 3:39-48.
  • [1] 方志远, 赵明, 杨昊, 邢昆明, 王邦新, 陈剑锋, 邓旭, 程亮亮, 谢晨波.  直接测风激光雷达频率跟踪技术及对流层平流层大气风场观测 . 红外与激光工程, 2023, 52(2): 20220412-1-20220412-9. doi: 10.3788/IRLA20220412
    [2] 樊国翔, 李杨, 张文喜, 伍洲, 吕彤.  全视场外差移相双波长干涉面形检测技术 . 红外与激光工程, 2022, 51(9): 20220118-1-20220118-9. doi: 10.3788/IRLA20220118
    [3] 储嘉齐, 韩於利, 孙东松, 赵一鸣, 刘恒嘉.  星载多普勒测风激光雷达小型化光学接收机 . 红外与激光工程, 2022, 51(9): 20210831-1-20210831-9. doi: 10.3788/IRLA20210831
    [4] 李国元, 么嘉棋, 赵一鸣, 李正强, 李旭, 唐洪钊.  激光测高卫星大气散射延迟改正现状及展望 . 红外与激光工程, 2020, 49(11): 20200234-1-20200234-11. doi: 10.3788/IRLA20200234
    [5] 褚培松, 陈洪雷, 李辉, 丁瑞军.  干涉式大气垂直探测仪读出电路研究 . 红外与激光工程, 2019, 48(7): 704006-0704006(7). doi: 10.3788/IRLA201948.0704006
    [6] 崔程光, 范龙飞, 张梦雨, 李云飞, 李永强, 王静怡.  傅里叶解析下的大气探测仪归一化穆勒元素 . 红外与激光工程, 2019, 48(6): 620001-0620001(6). doi: 10.3788/IRLA201948.0620001
    [7] 布音嘎日迪, 仲维丹, 甄佳奇, 高亚臣, 刘勇, 王生钱, 李彦超.  多普勒效应与激光外差技术复合检测金属线膨胀系数 . 红外与激光工程, 2018, 47(7): 706005-0706005(6). doi: 10.3788/IRLA201847.0706005
    [8] 蔡立华, 李周, 余毅, 张春林, 黄智国.  直接修正大气实现小目标高精度辐射测量 . 红外与激光工程, 2018, 47(S1): 44-49. doi: 10.3788/IRLA201847.S104002
    [9] 王俊龙, 杨大宝, 邢东, 梁士雄, 张立森, 赵向阳, 冯志红.  0.2THz宽带非平衡式倍频电路研究 . 红外与激光工程, 2017, 46(1): 106003-0106003(4). doi: 10.3788/IRLA201746.0106003
    [10] 田遥岭, 蒋均, 黄昆, 缪丽, 陆彬, 邓贤进.  0.34 THz肖特基二极管高速OOK信号直接检波器 . 红外与激光工程, 2017, 46(8): 822001-0822001(7). doi: 10.3788/IRLA201746.0822001
    [11] 王惠琴, 肖博, 孙剑锋, 贾非, 曹明华.  适合于强度调制/直接检测式大气激光通信的空时网格码 . 红外与激光工程, 2016, 45(6): 622003-0622003(6). doi: 10.3788/IRLA201645.0622003
    [12] 鱼艇, 潘蔚琳, 朱克云, 乔帅, 杨海龙.  夏季格尔木中间层大气温度探测初步分析 . 红外与激光工程, 2016, 45(12): 1211005-1211005(7). doi: 10.3788/IRLA201645.1211005
    [13] 李书磊, 刘磊, 高太长, 黄威.  THz技术在大气探测领域的应用研究进展 . 红外与激光工程, 2016, 45(11): 1125001-1125001(6). doi: 10.3788/IRLA201645.1125001
    [14] 赵振阳, 张鹏, 佟首峰.  基于延时自零差光相干接收机的激光器相位噪声测试系统 . 红外与激光工程, 2015, 44(11): 3211-3215.
    [15] 多丽娅, 张丽杰.  北斗卫星导航系统接收机测量误差建模及估计 . 红外与激光工程, 2015, 44(S1): 137-142.
    [16] 马春波, 夏宝会, 敖珺, 康家郡.  基于APD接收机的LDPC精确译码算法 . 红外与激光工程, 2015, 44(3): 1028-1033.
    [17] 郭淑霞, 张宁, 袁春娟.  一种基于微波暗室的大角域卫星导航接收机测试场景构建方法 . 红外与激光工程, 2014, 43(9): 2986-2991.
    [18] 汤恩生, 赵鸿, 周军.  角跟踪接收机中的自动校相技术 . 红外与激光工程, 2014, 43(1): 328-331.
    [19] 胡姝玲, 耿伟彪, 苑丹丹, 刘宏海, 马静.  相位调制光外差稳频信号检测技术 . 红外与激光工程, 2013, 42(1): 233-238.
    [20] 李琛, 舒志峰, 夏海云, 孙东松, 周广超, 汪建业.  利用Fabry-Perot标准具的米散射测风激光雷达接收机 . 红外与激光工程, 2012, 41(1): 107-111.
  • 加载中
计量
  • 文章访问数:  497
  • HTML全文浏览量:  117
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-12
  • 修回日期:  2015-09-15
  • 刊出日期:  2016-04-25

THz波大气探测仪器发展现状研究

doi: 10.3788/IRLA201645.0425002
    作者简介:

    高太长(1958-),男,教授,博士生导师,主要从事大气探测与大气遥感方面的研究。Email:2009gaotc@gmail.com

基金项目:

国家自然科学基金(41205125,41575024)

  • 中图分类号: P412

摘要: THz波在电磁波谱中位于微波至红外波段的过渡区域,其特性在空间研究及应用领域具有独特的优势,THz频段的大气遥感仪器可以为探测地球大气信息提供全新的视角,在大气科学领域展现出良好的应用前景。介绍了THz技术在大气探测领域的主要应用,综述了国内外THz频段的大气观测仪器的研究现状,通过各仪器关键指标参数的对比分析,总结了THz大气观测仪器的发展趋势及发展前景,并提出了发展THz大气遥感技术的建议。

English Abstract

参考文献 (71)

目录

    /

    返回文章
    返回