留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Taking the pulse of a plant: dynamic laser speckle analysis of plants

Zhong Xu Wang Xuezhi Cooley Nicola Farrell Peter Moran Bill

Zhong Xu, Wang Xuezhi, Cooley Nicola, Farrell Peter, Moran Bill. Taking the pulse of a plant: dynamic laser speckle analysis of plants[J]. 红外与激光工程, 2016, 45(9): 902002-0902002(12). doi: 10.3788/IRLA201645.0902002
引用本文: Zhong Xu, Wang Xuezhi, Cooley Nicola, Farrell Peter, Moran Bill. Taking the pulse of a plant: dynamic laser speckle analysis of plants[J]. 红外与激光工程, 2016, 45(9): 902002-0902002(12). doi: 10.3788/IRLA201645.0902002
Zhong Xu, Wang Xuezhi, Cooley Nicola, Farrell Peter, Moran Bill. Taking the pulse of a plant: dynamic laser speckle analysis of plants[J]. Infrared and Laser Engineering, 2016, 45(9): 902002-0902002(12). doi: 10.3788/IRLA201645.0902002
Citation: Zhong Xu, Wang Xuezhi, Cooley Nicola, Farrell Peter, Moran Bill. Taking the pulse of a plant: dynamic laser speckle analysis of plants[J]. Infrared and Laser Engineering, 2016, 45(9): 902002-0902002(12). doi: 10.3788/IRLA201645.0902002

Taking the pulse of a plant: dynamic laser speckle analysis of plants

doi: 10.3788/IRLA201645.0902002
详细信息
    作者简介:

    Zhong Xu (1987-),male,PhD.His research interests lie in the area of laser speckle analysis,plant sensing,and geographic information science.Email:peter.zhong49@gmail.com

  • 中图分类号: TP273

Taking the pulse of a plant: dynamic laser speckle analysis of plants

More Information
    Author Bio:

    Zhong Xu (1987-),male,PhD.His research interests lie in the area of laser speckle analysis,plant sensing,and geographic information science.Email:peter.zhong49@gmail.com

  • 摘要: Ideally, to achieve optimal production in agriculture, crop stress needs to be measured in real-time, and plant inputs managed in response. However, many important physiological responses like photosynthesis are difficult to measure, and current trade-offs between cost, robustness, and spatial measurement capacity of available plant sensors may prevent practical in-field application of most current sensing techniques. This paper investigates a novel application of laser speckle imaging of a plant leaf as a sensor with an aim, ultimately, to detect indicators of crop stress:changes to the dynamic properties of leaf topography on the scale of the wavelength of laser light. In our previous published work, an initial prototype of the laser speckle acquisition system specific for plant status measurements together with data processing algorithms were developed. In this paper, we report a new area based statistical method that improves robustness of the data processing against disturbances from various sources. Water and light responses of the laser speckle measurements from cabbage leaves taken by the developed apparatus are exhibited via growth chamber experiments. Experimental evidence indicates that the properties of the laser speckle patterns from a leaf are closely related to the physiological status of the leaf. This technology has the potential to be robust, cost effective, and relatively inexpensive to scale.
  • [1] Jones Hamlyn G, Vaughan Robin A. Remote Sensing of Vegetation:Principles, Techniques, and Applications[M]. Oxford:Oxford University Press, 2010.
    [2] Zhong X, Wang X, Farrell P, et al. Modeling and classifying surface roughness via laser speckle statistics[C]//Proceedings of the 2011 International Conference on Signal and Information Processing, Shanghai China, 2011.
    [3] Buckley T N, Mott K A, Farquhar G D. A hydromechanical and biochemical model of stom-atal conductance[J]. Plant, Cell Environment, 2003, 26(10):1767-1785.
    [4] Bowman William D. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves[J]. Remote Sensing of Environment, 1989, 30(3):249-255.
    [5] Saliendra Nicanor Z, Sperry John S, Comstock Jonathan P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in betula occidentalis[J]. Planta, 1995, 196(2):357-366.
    [6] Mohammad R Riahi, Hamid Latifi, Mohsen Sajjadi. Speckle correlation photography for the study of water content and sap flow in plant leaves[J]. Applied Optics, 2006, 45(29):7674-7678.
    [7] Tsukasa Matsuo, Hisashi Hirabayashi, Hiroaki Ishizawa, et al. Application of laser speckle method to water flow measurement in plant body[C]//Proceedings of the 2006 International Joint Conference on SICE-ICASE, 2006:3563-3566.
    [8] Kawamura M, Ishizawa H, Horiguchi T, et al. Laser speckle pattern measurement for plant state monitoring[C]//Proceedings of the 2010 SICE Annual Conference, 2010:2928-2932.
    [9] Wang Xuezhi, Yang Weiping, Ashley Wheaton, et al. Automated canopy temperature estimation via infrared thermography:a first step towards automated plant water stress monitoring[J]. Computers and Electronics in Agriculture, 2010, 73(1):74-83.
    [10] Rabal H J. Dynamic Laser Speckle and Applications[M]. New York:CRC Press, 2008.
    [11] Ricardo Arizaga, Nelly Luci, Marcelo Trivi, et al. Display of local activity using dynamical speckle patterns[J]. Optical Engineering, 2002, 41(2):287-294.
    [12] Briers J David, Webster Sian. Laser speckle contrast analysis (lasca):a nonscanning, full-field technique for monitoring capillary blood flow[J]. Journal of Biomedical Optics, 1996, 1(2):174-179.
    [13] Briers J David. Laser doppler, speckle and related techniques for blood perfusion mapping and imaging[J]. Physiological Measurement, 2001, 22(4):R35.
    [14] Miao Peng, Li Minheng, Fontenelle Hugues, et al. Imaging the cerebral blood flow with enhanced laser speckle contrast analysis (elasca) by monotonic point transformation[J]. Biomedical Engineering, IEEE Transactions on, 2009, 56(4):1127-1133.
    [15] Miao P, Rege A, Li N, et al. High resolution cerebral blood flow imag-ing by registered laser speckle contrast analysis[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(5):1152-1157.
    [16] Forrester K R, Tulip J, Leonard C, et al. A laser speckle imaging technique for measuring tissue perfusion[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(11):2074-2084.
    [17] Stewart J B. Modelling surface conductance of pine forest[J]. Agricultural and Forest Meteorology, 1988, 43(1):19-35.
    [18] Elaine Miles, Ann Roberts. Non-destructive speckle imaging of subsurface detail in paper-based cultural materials[J]. Optics Express, 2009, 17(15):12309-12314.
    [19] Zhong Xu, Wang Xuezhi, Nicola Cooley, et al. Normal vector based dynamic laser speckle analysis for plant water status monitoring[J]. Optics Communications, 2014, 313:256-262.
    [20] Braga Jr R A, Horgan G W, Enes A M, et al. Biological feature isolation by wavelets in biospeckle laser images[J]. Computers and Electronics in Agriculture, 2007, 58(2):123-132.
    [21] Nobre C M B, Braga Jr R A, Costa A G, et al. Biospeckle laser spectral analysis under inertia moment, entropy and cross-spectrum methods[J]. Optics Communications, 2009, 282(11):2236-2242.
    [22] Zhong Xu, Wang Xuezhi, Nicola Cooley, et al. Dynamic laser speckle analysis via normal vector space statistics[J]. Optics Communications, 2013, 305(313):27-35.
    [23] Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant, Cell Environment, 2003, 26(7):1097-1116.
    [24] Galle Damour, Thierry Simonneau, Herv Cochard, et al. An overview of models of stomatal conductance at the leaf level[J]. Plant, Cell Environment, 2010, 33(9):1419-1438.
    [25] Susanna Von Caemmerer. Biochemical Models of Leaf Photosynthesis[M]. Austrilia:Csiro Publishing, 2000.
    [26] Driscoll S P, Prins A, Olmos Enrique, et al. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves[J]. Journal of Experimental Botany, 2006, 57(2):381-390.
    [27] Belinda E Medlyn, Remko A Duursma, Derek Eamus, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance[J]. Global Change Biology, 2011, 17(6):2134-2144.
    [28] Xavier Chone, Cornelis Van Leeuwen, Denis Dubourdieu. Stem water potential is a sensitive indicator of grapevine water status[J]. Annals of Botany, 2001, 87(4):477-483.
    [29] Frangi A, Niessen W, Vincken K, et al. Multiscale vessel enhancement filtering[J]. Medical Image Computing and Computer-Assisted Interventation-MICCAI'98, 1998:130-137.
    [30] James Collatz G, Timothy Ball J, Cyril Grivet, et al. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration:a model that includes a laminar boundary layer[J]. Agricultural and Forest Meteorology, 1991, 54(2):107-136.
    [31] Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants[J]. Plant, Cell Environment, 1995, 18(4):339-355.
    [32] Gabriel Katul, Stefano Manzoni, Sari Palmroth, et al. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration[J]. Annals of Botany, 2010, 105(3):431-442.
    [33] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90.
    [34] Kirschbaum MUF, Kppers M, Schneider H. Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates[J]. Planta, 1997, 204(1):16-26.
    [35] Uwe Rascher, Ladislav Nedbal. Dynamics of photosynthesis in fluctuating light[J]. Current Opinion in Plant Biology, 2006, 9(6):671-678.
    [36] Kirschbaum MUF, Gross L J, Pearcy R W. Observed and modelled stomatal responses to dynamic light environments in the shade plant alocasia macrorrhiza[J]. Plant, Cell Environment, 1988, 11(2):111-121.
    [37] Silvre Vialet-Chabrand, Erwin Dreyer, Oliver Brendel. Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level[J]. Plant, Cell Environment, 2013, 8:1529-1546.
  • [1] Du Haiwei, Xu Chen.  THz generation from slow turn-on, rapid turn-off femtosecond laser pulses interaction with gas plasma . 红外与激光工程, 2022, 51(5): 20210361-1-20210361-8. doi: 10.3788/IRLA20210361
    [2] Yuan Chunyu, Cao Yang, Deng Yong, Zhang Shulian.  Improving the measurement accuracy of refractive index of GaAs and Sapphire Crystal by laser feedback interferometry . 红外与激光工程, 2022, 51(3): 20210400-1-20210400-7. doi: 10.3788/IRLA20210400
    [3] Guo Aiqiang, Li Tianpeng, Li Xiaonan, Gao Xinbao.  Simulation study of smoke screen jamming laser terminal guidance projectile . 红外与激光工程, 2022, 51(4): 20210225-1-20210225-11. doi: 10.3788/IRLA20210225
    [4] Song Yue, Wang Zhimin, Zhang Fengfeng, Bo Yong, Peng Qinjun.  Continuous-wave Alexandrite laser pumped by 638 nm and 532 nm lasers . 红外与激光工程, 2021, 50(3): 20200217-1-20200217-7. doi: 10.3788/IRLA20200217
    [5] Zhao Sicong, Qin Peng, Yan Dongyu, Liu Bowen, Wang Hongrui, Song Youjian, Wang Sijia, Hu Minglie.  Stable mode-locked Yb-fiber laser with a 6 MHz repetition rate tuning range . 红外与激光工程, 2021, 50(3): 20200205-1-20200205-8. doi: 10.3788/IRLA20200205
    [6] Zhang Chao, Tang Gengxiu, Liu Zhigang, Zheng Liunian, Jiang Youen, Zhang Donghui, Zhu Jianqiang.  Research on structure design of optical mount with high stability in laser system . 红外与激光工程, 2021, 50(6): 20210087-1-20210087-11. doi: 10.3788/IRLA20210087
    [7] Ma Bin, Han Jiaqi, Wang Ke, Huang Qiushi, Jiao Hongfei, Guan Shuang.  Distribution characteristics of metal film eruption induced by nanosecond pulse laser . 红外与激光工程, 2021, 50(11): 20210036-1-20210036-8. doi: 10.3788/IRLA20210036
    [8] Ma Jinyu, Chen Xin, Ding Guoqing, Chen Jigang.  Research on angle setting error of diameter measurement based on laser displacement sensors . 红外与激光工程, 2021, 50(5): 20200316-1-20200316-7. doi: 10.3788/IRLA20200316
    [9] Yan Yonggang, Wu Zhengxing, Li Zhi, Tang Yuqi.  Traceable analysis of the performance of an ultra-fine positioning stage using a differential plane mirror interferometer . 红外与激光工程, 2021, 50(11): 20210070-1-20210070-8. doi: 10.3788/IRLA20210070
    [10] Liu Hongming, Liu Yujuan, Song Ying, Zhong Zhicheng, Kong Lingsheng, Liu Huaibin.  Principle and optimum analysis of small near-infrared spectrometers based on digital micromirror device . 红外与激光工程, 2021, 50(2): 20200427-1-20200427-7. doi: 10.3788/IRLA20200427
    [11] Chen Yuanyuan, Han Jinhui, Zhang Honghui, Sang Xiaodan.  Infrared small dim target detection using local contrast measure weighted by reversed local diversity . 红外与激光工程, 2021, 50(8): 20200418-1-20200418-17. doi: 10.3788/IRLA20200418
    [12] Yang Ce, Chen Meng, Ma Ning, Xue Yaoyao, Du Xinbiao, Ji Lingfei.  Picosecond multi-pulse burst pump KGW infrared multi-wavelength Raman laser . 红外与激光工程, 2020, 49(11): 20200044-1-20200044-11. doi: 10.3788/IRLA20200044
    [13] Wang Mingjun, Zhang Jialin, Wang Jiao.  Propagation characteristics of non-uniformly Sinc-correlated blue-green laser beam through oceanic turbulence . 红外与激光工程, 2020, 49(6): 20190370-1-20190370-8. doi: 10.3788/IRLA20190370
    [14] Guo Ming, Zhang Yongxiang, Zhang Wenying, Li Hong.  Thermal damage of monocrystalline silicon irradiated by long pulse laser . 红外与激光工程, 2020, 49(3): 0305002-0305002-9. doi: 10.3788/IRLA202049.0305002
    [15] Liu Zhi, Chen Jimin, Li Dongfang, Zhang Chenyu.  Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties . 红外与激光工程, 2020, 49(9): 20200298-1-20200298-5. doi: 10.3788/IRLA20200298
    [16] Guo Ming, Zhang Yongxiang, Zhang Wenying, Li Hong.  Thermal damage of monocrystalline silicon irradiated by long pulse laser . 红外与激光工程, 2020, 49(3): 1-9.
    [17] Cheng Ying, Wang Zechao, Xie Xiaobing, Lu Yongbin, Chang Wenshuang.  Design and fabrication of a Fresnel lens for laser lamps . 红外与激光工程, 2020, 49(3): 0314003-0314003-7. doi: 10.3378/IRLA202049.0314003
    [18] Wang Xing, Gao Lei, Wang Yan, Wang Haitao.  Design of a hybid ultrasound and digital holography imaging system for detection of internal micro-defects . 红外与激光工程, 2020, 49(7): 20190518-1-20190518-11. doi: 10.3788/IRLA20190518
    [19] Yang Xu, Jiang Pengfei, Wu Long, Xu Lu, Zhang Jianlong, Hu Haili, Liu Yuehao, Zhang Yong.  Underwater Fourier single pixel imaging based on water degradation function compensation method . 红外与激光工程, 2020, 49(11): 20200281-1-20200281-12. doi: 10.3788/IRLA20200281
    [20] Osamu Matoba.  Reflection-type holographic disk-type memory using three-dimensional speckle-shift multiplexing . 红外与激光工程, 2016, 45(9): 935005-0935005(5). doi: 10.3788/IRLA201645.0935005
  • 加载中
计量
  • 文章访问数:  456
  • HTML全文浏览量:  56
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-07-03
  • 刊出日期:  2016-09-25

Taking the pulse of a plant: dynamic laser speckle analysis of plants

doi: 10.3788/IRLA201645.0902002
    作者简介:

    Zhong Xu (1987-),male,PhD.His research interests lie in the area of laser speckle analysis,plant sensing,and geographic information science.Email:peter.zhong49@gmail.com

  • 中图分类号: TP273

摘要: Ideally, to achieve optimal production in agriculture, crop stress needs to be measured in real-time, and plant inputs managed in response. However, many important physiological responses like photosynthesis are difficult to measure, and current trade-offs between cost, robustness, and spatial measurement capacity of available plant sensors may prevent practical in-field application of most current sensing techniques. This paper investigates a novel application of laser speckle imaging of a plant leaf as a sensor with an aim, ultimately, to detect indicators of crop stress:changes to the dynamic properties of leaf topography on the scale of the wavelength of laser light. In our previous published work, an initial prototype of the laser speckle acquisition system specific for plant status measurements together with data processing algorithms were developed. In this paper, we report a new area based statistical method that improves robustness of the data processing against disturbances from various sources. Water and light responses of the laser speckle measurements from cabbage leaves taken by the developed apparatus are exhibited via growth chamber experiments. Experimental evidence indicates that the properties of the laser speckle patterns from a leaf are closely related to the physiological status of the leaf. This technology has the potential to be robust, cost effective, and relatively inexpensive to scale.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回