留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远距离物质拉曼光谱探测系统

姚齐峰 王帅 夏嘉斌 张雯 祝连庆

姚齐峰, 王帅, 夏嘉斌, 张雯, 祝连庆. 远距离物质拉曼光谱探测系统[J]. 红外与激光工程, 2016, 45(11): 1103001-1103001(6). doi: 10.3788/IRLA201645.1103001
引用本文: 姚齐峰, 王帅, 夏嘉斌, 张雯, 祝连庆. 远距离物质拉曼光谱探测系统[J]. 红外与激光工程, 2016, 45(11): 1103001-1103001(6). doi: 10.3788/IRLA201645.1103001
Yao Qifeng, Wang Shuai, Xia Jiabing, Zhang Wen, Zhu Lianqing. Remote Raman spectrum detection system of material[J]. Infrared and Laser Engineering, 2016, 45(11): 1103001-1103001(6). doi: 10.3788/IRLA201645.1103001
Citation: Yao Qifeng, Wang Shuai, Xia Jiabing, Zhang Wen, Zhu Lianqing. Remote Raman spectrum detection system of material[J]. Infrared and Laser Engineering, 2016, 45(11): 1103001-1103001(6). doi: 10.3788/IRLA201645.1103001

远距离物质拉曼光谱探测系统

doi: 10.3788/IRLA201645.1103001
基金项目: 

国家高技术研究发展计划(863计划)(2015AA042308);国家自然科学基金(51675053);教育部“长江学者与创新团队”发展计划(IRT1212)

详细信息
    作者简介:

    姚齐峰(1985-),男,讲师,博士后,主要从事精密测量技术、微纳光学、光纤传感技术等领域方面的研究。Email:yaoqifeng@bistu.edu.cn

    通讯作者: 祝连庆(1963-),男,教授,博士生导师,主要从事光纤传感与激光器、生物医学检测技术及仪器、精密测量与系统方面的研究。Email:zhulianqing@sina.com
  • 中图分类号: TH744

Remote Raman spectrum detection system of material

  • 摘要: 为了实现远距离物质的识别检测,设计和建立了脉冲门控非接触式的拉曼光谱探测系统,利用强脉冲激光的高能量密度(~106 W)增强被探测物质的拉曼散射信号,通过大口径透镜系统提高拉曼光收集效率,同时采用同步延时系统控制ICCD的开启和积分时间,有效地去除背景光和荧光的干扰,提高信噪比,从而显著增加拉曼光谱探测距离。初步研究了不同通光口径对探测能力的影响,以及在950 mm的探测距离上获得了清晰的硫元素和纯净水的拉曼光谱信号。
  • [1] Misra A K, Sharma S K, Acosta T E, et al. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime[J]. Applied Spectroscopy, 2012, 66(11):1279-1285.
    [2] Sadate S, Kassu A, Sharma A, et al. Standoff Raman measurement of nitrates in water[C]//Remote Sensing and Modeling of Ecosystems for Sustainability VIII, 2011:29-53.
    [3] Liu Yi, Wang Guoqing, Zhang Zhaobin. Laser Raman spectrometry and its applications in petrochemical field[J]. Shiyou Huagong/petrochemical Technology, 2014, 43(10):1214-1220. (in Chinese)
    [4] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):13831-13840.
    [5] Sun Meijuan, Liu Junxian, Wang Xue, et al. Application of Raman spectroscopy in the microbiology[J]. Biotechnology Bulletin, 2012(10):63-68. (in Chinese)
    [6] Zhou Xiaofang, Fang Yan, Zhang Pengxiang. Raman spectra of pesticides on the surface of fruits[J]. Chinese Journal of Light Scattering, 2004, 16(1):11-14. (in Chinese)
    [7] Olcott Marshall A, Marshall C P. Field-based Raman spectroscopic analyses of an Ordovician stromatolite[J]. Astrobiology, 2013, 13(9):814-820.
    [8] Li Rubi. The application of the laser raman spectroscopy in gem determination[J]. Journal of Changzhou Teachers College of Technology, 2001, 7(2):1-4. (in Chinese)
    [9] Fan Jianliang, Guo Shouguo, Liu Xueliang. Application of Raman spectrometer (785 nm)to jadeite test[J]. Spectroscopy Spectral Analysis, 2007, 27(10):2057-2060. (in Chinese)
    [10] Mogilevsky G, Borland L, Brickhouse M, et al. Raman spectroscopy for homeland security applications[J]. International Journal of Spectroscopy, 2012:808079.
    [11] John Christian Curwen. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy, 2005, 59(6):769-775.
    [12] Gaft M, Naglil. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11):1739-1746.
    [13] Ramrez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote detection of hazardous liquids concealed in glass and plastic containers[J]. IEEE Sensors Journal, 2010, 10(3):693-698.
    [14] Sharma S K, Misra A K, Clegg S M, et al. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration[J]. Philosophical Transactions, 2010, 368(1922):3167-3191.
    [15] Maskall G. Spatially offset Raman spectroscopy (SORS) for liquid screening[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8189(1):167-175.
    [16] Zachhuber B, Ramer G, Hobro A, et al. Stand-off Raman spectroscopy:a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives[J]. Analytical Bioanalytical Chemistry, 2011, 400(8):2439-2447.
    [17] Rull F, Vegas A, Sansano A, et al. Analysis of arctic ices by remote Raman spectroscopy[J]. Spectrochimica Acta Part A Molecular Biomolecular Spectroscopy, 2011, 80(1):148-155.
    [18] Jin H C, Cho S G. Nanosecond gated raman spectroscopy for standoff detection of hazardous materials[J]. Bulletin-Korean Chemical Society, 2014, 35(12):3547-3552.
    [19] Skulinova M, Lefebvre C, Sobron P, et al. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration[J]. Planetary Space Science, 2014, 92(3):88-100.
    [20] Eshelman E, Daly M G, Slater G, et al. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy[J]. Planetary Space Science, 2015, 119:200-207.
    [21] Beegle L, Bhartia R, White M, et al. SHERLOC:scanning habitable environments with Raman luminescence for organics chemicals[C]//IEEE Aerospace Conference, 2015:1-11.
    [22] Matroodi F, Soleimaninejad H, Tavassoli S H. A single pulsed laser set-up for combined LIBS and Raman spectroscopy[C]//Icors, 2012(5):125.
    [23] Scaffidi J P, Gregas M K, Lauly B, et al. Trace molecular detection via surface-enhanced Raman scattering and surface-enhanced resonance raman scattering at a distance of 15 Meters[J]. Applied Spectroscopy, 2010, 64(5):485-492.
    [24] Prez1 C, Diaz1 E, Moral1 A, et al. Raman laer spectrometer development for exoMars[J]. EPSC Abstracts, 2013, 9:935.
    [25] Wiens R C, Sharma S K, Clegg S M, et al. Combined remote raman spectroscopy and LIBS instrumentation for mars astrobiology exploration[C]//Seventh International Conference on Mars, 2007(7):3092.
    [26] Wu Bin, Chen Kunfeng, Wang Hengfei, et al. Effect of ethanol molecules on change of water hydrogen bonding with laser Raman spectra[J]. Infrared and Laser Engineering, 2013, 42(11):2951-2956. (in Chinese)
    [27] Wang Ren, Jiao Cuiling, Xu Guoqing, et al. Growth and Raman spectrum of Au-doped Hg (1-x)CdxTe epitaxial crystals[J]. Infrared and Laser Engineering, 2014, 43(9):3046-3050. (in Chinese)
    [28] Wang Xin, Wu Jinglin, Fan Xianguang, et al. Design of Raman spectroscopy measurement system based on shifted excitation method using two laser diodes with different wavelengths[J]. Infrared and Laser Engineering, 2016, 45(1):52-57. (in Chinese)
    [29] Zhang Li, Zheng Haiyang, Wang Yinping, et al. Characteristics of Raman spectrum from stand-off detection[J]. Acta Physica, 2016, 65(5):134-143. (in Chinese)
    [30] Zhang Dan. Study of Raman spectrum technique for material detection on Mars surface[D]. Beijing:University of Chinese Academy of Sciences, 2015. (in Chinese)
    [31] Buren Batu, Han Siqingaowa, Hasi Wuliji, et al. Detection of sulphur in 2 mongolian medicines using Raman spectroscopy[J]. Chin J Pharm Anal, 2015(7):1279-1282. (in Chinese)
    [32] Zhao Yingchun, Ren Lingling, Wei Weisheng, et al. Calibration procedure of laser confocal micro-raman spectrometer[J]. Spectroscopy Spectral Analysis, 2015(9):2544-2547. (in Chinese)
  • [1] 余凯, 郭琦, 李娜, 成驰, 赵慧洁.  中红外AOTF成像仪光谱校准方法 . 红外与激光工程, 2023, 52(12): 20230291-1-20230291-9. doi: 10.3788/IRLA20230291
    [2] 司赶上, 刘家祥, 李振钢, 宁志强, 方勇华.  石英管增强拉曼光纤探头粉末样品探测 . 红外与激光工程, 2022, 51(12): 20220187-1-20220187-7. doi: 10.3788/IRLA20220187
    [3] 吕嘉明.  利伐沙班的定量检测:拉曼光谱法与远红外吸收光谱法 . 红外与激光工程, 2021, 50(2): 20210038-1-20210038-5. doi: 10.3788/IRLA20210038
    [4] 李彬, 王守山, 张旻南, 贾群, 王青.  用于新型精神活性物质检测的手持拉曼光谱仪 . 红外与激光工程, 2020, 49(S1): 20200101-20200101. doi: 10.3788/IRLA20200101
    [5] 李天舒, 姚齐峰, 李红, 王帅, 董明利.  用于易燃易爆危险化学品快速识别的手机拉曼系统 . 红外与激光工程, 2019, 48(7): 717002-0717002(6). doi: 10.3788/IRLA201948.0717002
    [6] 林正国, 金星, 常浩.  脉冲激光大光斑辐照空间碎片冲量耦合特性研究 . 红外与激光工程, 2018, 47(12): 1243001-1243001(6). doi: 10.3788/IRLA201847.1243001
    [7] 陈杉杉, 张合, 徐孝彬.  脉冲激光周向探测地面目标捕获建模与仿真 . 红外与激光工程, 2018, 47(2): 206001-0206001(11). doi: 10.3788/IRLA201847.0206001
    [8] 王帅, 夏嘉斌, 姚齐峰, 董明利, 祝连庆.  远程激光拉曼光谱探测系统前置光学系统设计 . 红外与激光工程, 2018, 47(4): 418004-0418004(8). doi: 10.3788/IRLA201847.0418004
    [9] 张震, 徐作冬, 程德艳, 师宇斌, 张检民.  FT-CCD的纳秒脉冲激光毁伤效应 . 红外与激光工程, 2017, 46(10): 1003001-1003001(5). doi: 10.3788/IRLA201746.1003001
    [10] 金星, 常浩, 叶继飞.  超短脉冲激光烧蚀冲量耦合测量方法 . 红外与激光工程, 2017, 46(3): 329002-0329002(7). doi: 10.3788/IRLA201746.0329002
    [11] 韩威, 郑翔, 赵柏秦.  激光探测小型化收发系统设计 . 红外与激光工程, 2017, 46(9): 906008-0906008(7). doi: 10.3788/IRLA201746.0906008
    [12] 张月, 王睿, 杨海峰.  线阵碲镉汞探测器对纳秒脉冲激光的反常响应规律及机理 . 红外与激光工程, 2017, 46(10): 1003003-1003003(7). doi: 10.3788/IRLA201748.1003003
    [13] 张明, 朱绍玲, 高飞, 罗果.  乳腺癌氧合血红蛋白表面增强拉曼光谱研究 . 红外与激光工程, 2017, 46(4): 433001-0433001(5). doi: 10.3788/IRLA201746.0433001
    [14] 王昕, 吴景林, 范贤光, 许英杰, 卢仙聪, 左勇.  双波长激光移频激发拉曼光谱测试系统设计 . 红外与激光工程, 2016, 45(1): 106005-0106005(6). doi: 10.3788/IRLA201645.0106005
    [15] 张长桃, 张朝阳, 蔡明霞, 丁伟, 毛卫平, 徐宇蓝.  脉冲激光热力冲击效应对电沉积的作用 . 红外与激光工程, 2015, 44(1): 65-70.
    [16] 宋燕星, 王晶, 冯其波, 陈士谦.  激光参数及激光超声探测方法对超声信号影响 . 红外与激光工程, 2014, 43(5): 1433-1437.
    [17] 王仍, 焦翠灵, 徐国庆, 陆液, 张可峰, 杜云辰, 李向阳, 张莉萍, 邵秀华, 林杏潮.  金掺杂碲镉汞外延材料生长及拉曼光谱研究 . 红外与激光工程, 2014, 43(9): 3046-3050.
    [18] 林涛, 刘飞, 韩平丽, 邵晓鹏, 任勐, 吕鸿鹏, 张建奇.  中波红外隐身目标光谱探测的谱带选择方法 . 红外与激光工程, 2014, 43(4): 1047-1051.
    [19] 李姣, 张天序.  基于Laplacian-Markov先验数据的加权光谱反卷积模型 . 红外与激光工程, 2013, 42(12): 3464-3469.
    [20] 吴斌, 陈坤峰, 王恒飞, 应承平, 史学舜, 刘红元, 骆晓森.  用激光拉曼光谱研究乙醇对水分子氢键的影响 . 红外与激光工程, 2013, 42(11): 2951-2956.
  • 加载中
计量
  • 文章访问数:  628
  • HTML全文浏览量:  88
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-05
  • 修回日期:  2016-11-20
  • 刊出日期:  2016-11-25

远距离物质拉曼光谱探测系统

doi: 10.3788/IRLA201645.1103001
    作者简介:

    姚齐峰(1985-),男,讲师,博士后,主要从事精密测量技术、微纳光学、光纤传感技术等领域方面的研究。Email:yaoqifeng@bistu.edu.cn

    通讯作者: 祝连庆(1963-),男,教授,博士生导师,主要从事光纤传感与激光器、生物医学检测技术及仪器、精密测量与系统方面的研究。Email:zhulianqing@sina.com
基金项目:

国家高技术研究发展计划(863计划)(2015AA042308);国家自然科学基金(51675053);教育部“长江学者与创新团队”发展计划(IRT1212)

  • 中图分类号: TH744

摘要: 为了实现远距离物质的识别检测,设计和建立了脉冲门控非接触式的拉曼光谱探测系统,利用强脉冲激光的高能量密度(~106 W)增强被探测物质的拉曼散射信号,通过大口径透镜系统提高拉曼光收集效率,同时采用同步延时系统控制ICCD的开启和积分时间,有效地去除背景光和荧光的干扰,提高信噪比,从而显著增加拉曼光谱探测距离。初步研究了不同通光口径对探测能力的影响,以及在950 mm的探测距离上获得了清晰的硫元素和纯净水的拉曼光谱信号。

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回