留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能光纤激光器光束合成技术

程雪 王建立 刘昌华

程雪, 王建立, 刘昌华. 高能光纤激光器光束合成技术[J]. 红外与激光工程, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
引用本文: 程雪, 王建立, 刘昌华. 高能光纤激光器光束合成技术[J]. 红外与激光工程, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
Cheng Xue, Wang Jianli, Liu Changhua. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
Citation: Cheng Xue, Wang Jianli, Liu Changhua. Beam combining of high energy fibre lasers[J]. Infrared and Laser Engineering, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011

高能光纤激光器光束合成技术

doi: 10.3788/IRLA201847.0103011
基金项目: 

吉林省与中国科学院科技合作高新技术产业化专项资金项目(2015SYHZ003)

详细信息
    作者简介:

    程雪(1988-),女,博士生,主要从事激光光束合成方面的研究。Email:littlesnow@126.com

  • 中图分类号: TN253

Beam combining of high energy fibre lasers

  • 摘要: 高能光纤激光器光束合成技术是近年来高能激光器尤其是定向能源应用中的研究热点,可突破单根单模光纤激光的输出功率限制,为高功率高光束质量的激光武器应用奠定了理论基础。介绍了光纤激光非相干合成和相干合成的国内外研究现状,给出了非相干合成技术中光束重叠和光谱合成的基本合成原理,重点介绍了国内外多家研究机构光谱合成近年来所达到的技术水平;介绍了国内外相干合成技术的最新研究进展,对相干合成等效大口径激光阵列输出中几种不同的透射式相干合成阵列输出和反射式相干合成阵列输出的关键合成装置,以及相干合成单一孔径输出中的核心光学元件进行详细分析。最后简要对比了高能光纤激光器光束相干合成技术和非相干合成技术的优缺点和应用范围。
  • [1] Coffey V. High-energy lasers:new advances in defense applications[J]. Optics and Photonics News, 2014, 25(10):28-35.
    [2] Jones Q. Targets destroyed-at the speed of light[J]. Boeing Frontiers, 2014, 8(2):32-35.
    [3] Wang Huisheng, Liu Yang, Wei Shangfang, et al. Coherent combination of Michelson cavity fibre lasers[J]. Optics and Precision Engineering, 2009, 17(8):1520-1527. (in Chinese)王会升, 刘洋, 韦尚方, 等. 迈氏腔光纤激光器的相干合成[J]. 光学精密工程, 2009, 17(8):1520-1527.
    [4] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17):13240-13266.
    [5] Zervas M N, Codemard C A. High power fiber lasers:A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):219-241.
    [6] Sprangle P, Penano J, Hafizi B. Beam combining and atmospheric propagation of high power lasers[R]. Washington, DC:Naval Research Laboratory Beam Physics Branch Icarus Research, Inc., 2011.
    [7] Staton R, Pawlak R. Laser weapon system (LAWS) adjunct to the close-in weapon system (CIWS)[R]. Dahlgren, VA:Naval Surface Warfare Center Dahlgren Division, Corporate Communication, 2012.
    [8] Mohring B, Dietrich S, Tassini L, et al. High-energy laser activities at MBDA Germany[C]//SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2013, 8733:873304-1-9.
    [9] Sprangle P A, Penano J R, Hafizi B, et al. Apparatus for incoherent combining of high power lasers for long-range directed-energy applications:US, US Patent7970040[P]. 2011-06-28.
    [10] Bourdon P, Lombard L, Durcu A, et al. Coherent combining of fiber lasers[C]//XXI International Symposium on High Power Laser Systems and Applications. International Society for Optics and Photonics, 2017, 10254:1025402-1-10.
    [11] Lowenthal D. Lasers Sources Across the Spectrum[J]. SPIE's Oemagazine, 2005, 4:28.
    [12] Divliansky I. Volume Bragg Gratings:Fundamentals and Applications in Laser Beam Combining and Beam Phase Transformations[M]//Naydenova I, Nazarova D, Babeva T.Holographic Materials and Optical Systems. London:InTech, 2017.
    [13] Sevian A, Andrusyak O, Ciapurin I V, et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Optics Letters, 2008, 33(4):384-386.
    [14] Divliansky I, Ott D, Anderson B, et al. Multiplexed volume Bragg gratings for spectral beam combining of high power fiber lasers[C]//Proc SPIE, 2012, 8237:823705.
    [15] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16):3118-3120.
    [16] Loftus T H, Liu A P, Hoffman P R, et al. 522W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality[J]. Optics Letters, 2007, 32(4):349-351.
    [17] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[C]//SPIE, 2013, 8601:8601155.
    [18] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2016, 9730:97300Y.
    [19] Madasamy P, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):337-343.
    [20] Ma Yi, Yan Hong, Tian Fei, et al. Common aperture spectral beam combination of fiber lasers with 5kW power high-eficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(4):7-9. (in Chinese)马毅, 颜宏, 田飞, 等. 光纤激光共孔径光谱合成实现5kW高效优质输出[J]. 强激光与粒子束, 2015, 27(4):7-9.
    [21] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43(9):0901009. (in Chinese)马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43(9):0901009.
    [22] Zheng Ye, Yang Yifeng, Zhao Xiang, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2):0201002. (in Chinese)郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44(2):0201002.
    [23] Vorontsov M. Adaptive photonics phase-locked elements (APPLE):system architecture and wavefront control concept[C]//SPIE, 2005, 5895:1-9.
    [24] Zhang Yudong, Rao Changhui, Li Xinyang. Adaptive Optics and Laser Control[M]. Beijing:National Defense Industry Press, 2016. (in Chinese)张雨东, 饶长辉, 李新阳. 自适应光学及激光操控[M]. 北京:国防工业出版社, 2016.
    [25] Fan Xinyan. Research of active phase-locking fiber laser coherent combining technique[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)范馨燕. 主动锁相光纤激光相干合成技术研究[D]. 哈尔滨:哈尔滨工业大学, 2010.
    [26] Liu Zejin, Xu Xiaojun, Chen Jinbao, et al. Multi beams combiner with high duty ratio:CN Patent,ZL200920065407.7[P]. 2010-06-23. (in Chinese)刘泽金, 许晓军, 陈金宝, 等. 多光束高占空比合束器:中国专利, ZL200920065407.7[P]. 2010-06-23.
    [27] Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators:analysis and experimental demonstration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):269-280.
    [28] Jenna Brady. Army develops first-of-its kind phase-coherent fiber laser array system[EB/OL]. (2014-06-11)[2017-06-01].U.S. Army Research Laboratory, https://www..army.mil/article/127565/Army_develops_first_of_its_kind_phase_coherent_fiber_laser_array_system/.
    [29] Geng Chao, Zhang Xiaojun,Li Xinyang, et al. Structural design of adaptive fiber optics collimators[J]. Infrared and Laser Engineering, 2011, 40(9):1682-1685. (in Chinese)耿超, 张小军, 李新阳, 等. 自适应光纤光源准直器的结构设计[J]. 红外与激光工程, 2011, 40(9):1682-1685.
    [30] Wang Xiong, Wang Xiaolin, Zhou Pu, et al. Experimental research of tilt-tip wavefront and phase-locking control in fiber lasers coherent beam combining[J]. Infrared and Laser Engineering, 2013, 42(6):1443-1447. (in Chinese)王雄, 王小林, 周朴, 等. 光纤激光相干合成中倾斜和锁相同时控制的实验研究[J]. 红外与激光工程, 2013, 42(6):1443-1447.
    [31] Christensen S E, Koski O. 2-dimensional waveguide coherent beam combiner[C]//Advanced Solid-State Photonics. Optical Society of America, 2007.
    [32] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 2010, 18(13):13547-13553.
    [33] Cheung E, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4):354-356.
    [34] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14):2832-2834.
    [35] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Optics Letters, 2012, 37(18):3741-3743.
    [36] Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination[J]. IEEE Journal of Quantum Electronics, 2010, 46(8):1191-1196.
    [37] Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Applied Optics, 2010, 49(35):6762-6765.
    [38] Ma P, Zhou P, Ma Y, et al. Coherent polarization beam combining of four high power fiber amplifiers using single frequency dithering technique[J]. IEEE Photonics Technology Letters, 2012, 24(12):1024-1026.
    [39] Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique[J]. Laser Physics Letters, 2012, 9(6):456-458.
    [40] Liu Zejin, Zhou Pu, Ma Pengfei, et al. 4-channel polarize coherent combination of high-power narrow-linewidth linear polarization fiber amplifiers with 5 kW high intensity laser output[J]. Chinese Journal of Lasers, 2017, 44(4):0415004. (in Chinese)刘泽金, 周朴, 马鹏飞,等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5 kW级高亮度激光输出[J]. 中国激光, 2017, 44(4):0415004.
  • [1] 周朴, 蒋敏, 吴函烁, 邓宇, 常洪祥, 黄良金, 吴坚, 许将明, 王小林, 冷进勇.  学科交叉视角下的光纤激光:回顾与展望(特邀) . 红外与激光工程, 2023, 52(6): 20230334-1-20230334-16. doi: 10.3788/IRLA20230334
    [2] 殳博王, 张雨秋, 常洪祥, 常琦, 冷进勇, 马鹏飞, 周朴.  光纤激光相控阵光束扫描技术发展 . 红外与激光工程, 2023, 52(6): 20230250-1-20230250-14. doi: 10.3788/IRLA20230250
    [3] 王涛, 李灿, 刘洋, 任博, 唐振强, 常洪祥, 谢戈辉, 郭琨, 吴坚, 许将明, 冷进勇, 马鹏飞, 粟荣涛, 李文雪, 周朴.  基于光纤拉伸器锁相实现两路超快激光相干偏振合成 . 红外与激光工程, 2023, 52(6): 20220869-1-20220869-8. doi: 10.3788/IRLA20220869
    [4] 何旭宝, 肖虎, 马鹏飞, 张汉伟, 王小林, 许晓军.  基于双色镜的2.3 kW光纤激光光束合成 . 红外与激光工程, 2021, 50(2): 20200385-1-20200385-7. doi: 10.3788/IRLA20200385
    [5] 支冬, 马阎星, 马鹏飞, 粟荣涛, 陈子伦, 周朴, 司磊.  公里级湍流大气环境下光纤激光高效相干合成 . 红外与激光工程, 2019, 48(10): 1005007-1005007(4). doi: 10.3788/IRLA201948.1005007
    [6] 张利明, 鄢楚平, 冯进军, 张昆, 张浩彬, 朱辰, 张大勇, 赵鸿, 陈念江, 李尧, 郝金坪, 王雄飞, 何晓彤, 周寿桓.  180 W单频全光纤激光器 . 红外与激光工程, 2018, 47(11): 1105001-1105001(9). doi: 10.3788/IRLA201847.1105001
    [7] 曹宇轩, 舒世立, 孙方圆, 赵宇飞, 佟存柱, 王立军.  中红外半导体激光器合束技术研究进展(特邀) . 红外与激光工程, 2018, 47(10): 1003002-1003002(8). doi: 10.3788/IRLA201847.1003002
    [8] 刘翠翠, 王翠鸾, 王鑫, 倪羽茜, 吴霞, 刘素平, 马骁宇.  半导体激光器双波长光纤耦合模块的ZEMAX设计 . 红外与激光工程, 2018, 47(1): 105002-0105002(6). doi: 10.3788/IRLA201847.0105002
    [9] 马毅, 颜宏, 孙殷宏, 彭万敬, 李建民, 王树峰, 李腾龙, 王岩山, 唐淳, 张凯.  基于双光栅的光纤激光光谱合成关键技术研究进展(特邀) . 红外与激光工程, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002
    [10] 夏润秋, 陈青山, 刘洋, 肖立亮.  线阵光纤激光相干合成角度扫描控制方法研究 . 红外与激光工程, 2018, 47(9): 906006-0906006(6). doi: 10.3788/IRLA201847.0906006
    [11] 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞.  超短脉冲光纤激光相干合成(特邀) . 红外与激光工程, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
    [12] 曾江辉, 张培晴, 张倩, 李杏, 许银生, 王训四, 戴世勋.  啁啾光纤光栅在硫系光纤激光器中的色散补偿 . 红外与激光工程, 2017, 46(10): 1005007-1005007(7). doi: 10.3788/IRLA201758.1005007
    [13] 史伟, 房强, 李锦辉, 付士杰, 李鑫, 盛泉, 姚建铨.  激光雷达用高性能光纤激光器 . 红外与激光工程, 2017, 46(8): 802001-0802001(5). doi: 10.3788/IRLA201746.0802001
    [14] 王立军, 彭航宇, 张俊, 秦莉, 佟存柱.  高功率高亮度半导体激光器合束进展 . 红外与激光工程, 2017, 46(4): 401001-0401001(10). doi: 10.3788/IRLA201746.0401001
    [15] 董繁龙, 赵方舟, 葛廷武, 王智勇.  光纤弯曲对掺镱光纤激光器光束质量的影响 . 红外与激光工程, 2014, 43(11): 3565-3569.
    [16] 左林, 杨爱英, 赖俊森, 孙雨南.  非线性偏振旋转锁模光纤激光器数值模型 . 红外与激光工程, 2013, 42(1): 57-62.
    [17] 方秀丽, 童峥嵘, 曹晔, 杨秀峰.  采用F-P光纤环滤波器的窄线宽环形腔光纤激光器 . 红外与激光工程, 2013, 42(2): 329-333.
    [18] 王雄, 王小林, 周朴, 粟荣涛, 耿超, 李新阳, 许晓军, 舒柏宏.  光纤激光相干合成中倾斜和锁相同时控制的实验研究 . 红外与激光工程, 2013, 42(6): 1443-1447.
    [19] 王倩, 宋兴亮, 刘广义, 范元媛, 崔惠绒, 鲍洋, 周翊.  基于迈克尔逊腔光纤激光相干合成的输出特性 . 红外与激光工程, 2013, 42(1): 73-78.
    [20] 赵思思, 叶征宇, 王智勇.  光纤激光阵列自组织相干合成的性能研究 . 红外与激光工程, 2012, 41(1): 63-68.
  • 加载中
计量
  • 文章访问数:  689
  • HTML全文浏览量:  114
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 修回日期:  2017-08-20
  • 刊出日期:  2018-01-25

高能光纤激光器光束合成技术

doi: 10.3788/IRLA201847.0103011
    作者简介:

    程雪(1988-),女,博士生,主要从事激光光束合成方面的研究。Email:littlesnow@126.com

基金项目:

吉林省与中国科学院科技合作高新技术产业化专项资金项目(2015SYHZ003)

  • 中图分类号: TN253

摘要: 高能光纤激光器光束合成技术是近年来高能激光器尤其是定向能源应用中的研究热点,可突破单根单模光纤激光的输出功率限制,为高功率高光束质量的激光武器应用奠定了理论基础。介绍了光纤激光非相干合成和相干合成的国内外研究现状,给出了非相干合成技术中光束重叠和光谱合成的基本合成原理,重点介绍了国内外多家研究机构光谱合成近年来所达到的技术水平;介绍了国内外相干合成技术的最新研究进展,对相干合成等效大口径激光阵列输出中几种不同的透射式相干合成阵列输出和反射式相干合成阵列输出的关键合成装置,以及相干合成单一孔径输出中的核心光学元件进行详细分析。最后简要对比了高能光纤激光器光束相干合成技术和非相干合成技术的优缺点和应用范围。

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回