留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2 μm GaSb基大功率半导体激光器研究进展

谢圣文 杨成奥 黄书山 袁野 邵福会 张一 尚金铭 张宇 徐应强 倪海桥 牛智川

谢圣文, 杨成奥, 黄书山, 袁野, 邵福会, 张一, 尚金铭, 张宇, 徐应强, 倪海桥, 牛智川. 2 μm GaSb基大功率半导体激光器研究进展[J]. 红外与激光工程, 2018, 47(5): 503003-0503003(9). doi: 10.3788/IRLA201847.0503003
引用本文: 谢圣文, 杨成奥, 黄书山, 袁野, 邵福会, 张一, 尚金铭, 张宇, 徐应强, 倪海桥, 牛智川. 2 μm GaSb基大功率半导体激光器研究进展[J]. 红外与激光工程, 2018, 47(5): 503003-0503003(9). doi: 10.3788/IRLA201847.0503003
Xie Shengwen, Yang Cheng'ao, Huang Shushan, Yuan Ye, Shao Fuhui, Zhang Yi, Shang Jinming, Zhang Yu, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 2 μm GaSb-based high power semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47(5): 503003-0503003(9). doi: 10.3788/IRLA201847.0503003
Citation: Xie Shengwen, Yang Cheng'ao, Huang Shushan, Yuan Ye, Shao Fuhui, Zhang Yi, Shang Jinming, Zhang Yu, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 2 μm GaSb-based high power semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47(5): 503003-0503003(9). doi: 10.3788/IRLA201847.0503003

2 μm GaSb基大功率半导体激光器研究进展

doi: 10.3788/IRLA201847.0503003
基金项目: 

国家自然科学基金(61790580,61435012);国家973计划(2014CB643903)

详细信息
    作者简介:

    谢圣文(1991-),博士生,主要从事GaSb基大功率激光器方面的研究。Email:xsw@semi.ac.cn

  • 中图分类号: TN248

Research progress of 2 μm GaSb-based high power semiconductor laser

  • 摘要: 2 m波段GaSb基大功率激光器在诸多领域具有广阔的应用前景,如气体探测、医疗美容、激光加工等。基于功率提升,综述和讨论了2 m波段GaSb基激光器结构的发展过程,介绍了目前国内外的研究状况,讨论和分析了GaSb基激光器提升功率、效率的主要技术问题。并详细介绍了该领域近年来在传统激光器中引入的两种新结构,分析了其技术优势。指出目前2 m波段GaSb基大功率激光器面临瓶颈,并讨论了其发展趋势。
  • [1] Peters M, Rossin V, Zucker E. High-power high-efficiency laser diodes at JDSU[C]//High-Power Diode Laser Technology and Applications V, 2007:1217-1222.
    [2] Scholle K, Lamrini S, Koopmann P, et al. 2m Laser Sources and Their Possible Applications[M].[S.L.] Frontiers in Guided Wave Optics and Optoelectronics, 2010.
    [3] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A Molecular Biomolecular Spectroscopy, 1998, 54(2):197-236.
    [4] Sun Quanshe, Chen Kunfeng, Shi Xueshun. Mid infrared laser power stabilizer[J]. Infrared and Laser Engineering, 2015, 44(7):2127-2131. (in Chinese)孙权社, 陈坤峰, 史学舜. 中红外激光器功率稳定器技术[J]. 红外与激光工程, 2015, 44(7):2127-2131.
    [5] Zhang Dongyan, Wang Rongrui. Progress on mid-infrared lasers[J]. Laser Infrared, 2011, 41(5):487-491. (in Chinese)张冬燕, 王戎瑞. 高功率中红外激光器的进展[J]. 激光与红外, 2011, 41(5):487-491.
    [6] Lamrini S, Koopmann P, Schfer M, et al. Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9m[J]. Applied Physics B, 2012, 106(2):315-319.
    [7] Garbuzov D Z, Menna R J, Maiorov M A, et al. 2.3-to 2.7-m room-temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers[C]//Optoelectronics '99-Integrated Optoelectronic Devices. International Society for Optics and Photonics, 1999:124-129.
    [8] Belenky G L, Kim J G, Shterengas L, et al. High-power 2.3m laser arrays emitting 10 W CW at room temperature[J]. Electronics Letters, 2004, 40(12):737-738.
    [9] Belenky G, Shterengas L, Donetsky D, et al. Advances in Type-I GaSb based lasers[J]. Japanese Journal of Applied Physics, 2008, 47(10):8236-8238.
    [10] Belenky G, Shterengas L, Kipshidze G, et al. Type-I diode lasers for spectral region above 3m[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5):1426-1434.
    [11] Lin Y, Suchalkin S, Kipshidze G, et al. Effect of hole transport on performance of infrared type-Ⅱ superlattice light emitting diodes[J]. Journal of Applied Physics, 2015, 117(16):757.
    [12] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-Ⅱ interband cascade laser[J]. Applied Physics Letters, 2002, 81(3):397-399.
    [13] Vurgaftman I, Meyer J R. High-performance interband cascade lasers emitting in the 2.9-4.2m wavelength range[C]//SPIE, 2009, 7230:747-748.
    [14] Bewley W W, Kim C S, Kim M, et al. A new generation of interband cascade lasers[C]//15th International Conference on Narrow Gap Systems, AIP Conference Proceeding, 2011, 1416(1):46-48.
    [15] Vurgaftman I, Bewley W W, Merritt C D, et al. Physics of interband cascade lasers[C]//Quantum Sensing and Nanophotonic Devices IX, International Society for Optics and Photonics, 2012:87-94.
    [16] Vurgaftman I, Meyer J R. Mid-IR distributed-feedback interband cascade lasers[C]//Quantum Sensing and Nanophotonic Devices X, 2013:1372-1375.
    [17] Popov A, Sherstnev V, Yakovlev Y, et al. High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6m[J]. Applied Physics Letters, 1996, 68(20):2790-2792.
    [18] Simanowski S, Herres N, Mermelstein C, et al. Strain adjustment in (GaIn)(AsSb)/(AlGa)(AsSb) QWs for 2.3-2.7m laser structures[J]. Journal of Crystal Growth, 2000, 209(1):15-20.
    [19] Mermelstein C, Rattunde M, Kiefer R, et al. Physics and applications of Ⅲ-Sb-based type-I QW diode lasers[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4651:173-184.
    [20] Kelemen M T, Rattunde M, Wagner J. Mid-infrared high-power diode lasers and modules[C]//SPIE, 2010, 7583:75830O.
    [21] Kaspar S, Rattunde M, Tpper T, et al. Recent advances in 2-m GaSb-based semiconductor disk laser-Power scaling, narrow-linewidth and short-pulse operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1501908.
    [22] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Applied Physics Letters, 2005, 87(15):151109.
    [23] Hill C J, Mansour K, Qiu Y, et al. Thermoelectric cooled mid-IR interband cascade lasers[C]//Semiconductor Laser Conference, 2006 Conference Digest, 2006:93-94.
    [24] Rodriguez J B, Cerutti L, Tournie E. GaSb-based, 2.2m type-I laser fabricated on GaAs substrate operating continuous wave at room temperature[J]. Applied Physics Letters, 2009, 94(2):1875.
    [25] Tourni E, Sanchez D, Cerutti L. Single mode operation of monolithic GaSb VCSELs[C]//Mirsens, 2012.
    [26] Motyka M, Ryczko K, Sek G, et al. Type Ⅱ quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared[J]. Optical Materials, 2012, 34(7):1107-1111.
    [27] Weih R, Bauer A, Kamp M, et al. Interband cascade lasers with AlGaAsSb bulk cladding layers[J]. Optical Materials Express, 2013, 3(10):1624-1631.
    [28] Tian Z, Hinkey R, Zhao F, et al. Interband cascade lasers with separate-confinement layers[C]//LEOS 2008-, Meeting of the IEEE Lasers and Electro-Optics Society, IEEE, 2008:749-750.
    [29] Mansour K, Hill C J, Qiu Y, et al. Dual-wavelength interband cascade lasers in mid-infrared spectral region[C]//Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on IET, 2008:1-2.
    [30] Jiang Y, Li L, Tian Z, et al. Electrically widely tunable interband cascade lasers[J]. Journal of Applied Physics, 2014, 115(11):2697-2702.
    [31] Vizbaras A, Dvinelis E, Trinkūnas A, et al. High-performance mid-infrared GaSb laser diodes for defence and sensing applications[C]//SPIE Defense, Sensing and Security, 2014:90-98.
    [32] Melngailis I. Maser action in InAs diodes[J]. Applied Physics Letters, 1963, 2(9):176-178.
    [33] Caneau C, Srivastava A K, Dentai A G, et al. Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 microns[J]. Electronics Letters, 1985, 21(18):815-817.
    [34] Chiu T H, Tsang W T, Ditzenberger J A, et al. Room-temperature operation of InGaAsSb/AlGaSb double heterostructure lasers near 2.2m prepared by molecular beam epitaxy[J]. Applied Physics Letters, 1986, 49(17):1051-1052.
    [35] Choi H K, Eglash S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1m with low threshold current density[J]. Applied Physics Letters, 1992, 61:1154-1156.
    [36] Lee H, York P K, Menna R J, et al. Room-temperature 2.78m AlGaAsSb/GaInAsSb quantum-well lasers[J]. Appl Phys Lett, 1995, 66:1942.
    [37] Garbuzov D Z, Martinelli R U, Lee H, et al. 4 W quasi-continuous-wave output power from 2m AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes[J]. Applied Physics Letters, 1997, 70(22):2931-2933.
    [38] Rattunde M, Mermelstein C, Schmitz J, et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0m diode lasers[J]. Applied Physics Letters, 2002, 80(22):4085-4087.
    [39] Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.X m quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8):2931.
    [40] Kelemen M T, Weber J, Rattunde M, et al. High-power 1.9m diode laser arrays with reduced far-field angle[J]. IEEE Photonics Technology Letters, 2006, 18(4):628-630.
    [41] Kim J G, Shterengas L, Martinelli R U, et al. High-power room-temperature continuous wave operation of 2.7 and 2.8m In(Al)GaAsSb/GaSb diode lasers[J]. Applied Physics Letters, 2003, 83(10):1926-1928.
    [42] Xing Junliang, Zhang Yu, Liao Yongping, et al. Investigation of interfaces in AlSb/InAs/Ga0.71In0.29Sb quantum wells by photoluminescence[J]. Journal of Applied Physics, 2014, 116(12):406.
    [43] Xing Junliang, Zhang Yu, Liao Yongping, et al. Room-temperature operation of 2.4m InGaAsSb/A1GaAsSb quantum-well laser diodes with low-threshold current density[J]. Chinese Physics Letters, 2014, 31(5):69-71.
    [44] Yong Cheng'ao, Zhang Yu, Liao Yongping, et al. 2-m single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chinese Physics B, 2016, 25(2):181-185.
    [45] Liao Yongping, Zhang Yu, Xing Junliang, et al. High power laser diodes of 2m AlGaAsSb/InGaSb type I quantum-wells[J]. Journal of Semiconductors, 2015, 36(5):50-53.
    [46] Liao Yongping, Zhang Yu, Xing Junliang, et al. GaSb-based quantum wells 2m high power laser diode[J]. Chinese Journal of Laser, 2015, 42(S1):S102006. (in Chinese)廖永平, 张宇, 邢军亮, 等. 锑化镓基量子阱2m大功率激光器[J]. 中国激光, 2015, 42(S1):S102006.
    [47] Peters M, Rossin V, Zucker E. High-power high-efficiency laser diodes at JDSU[C]//High-Power Diode Laser Technology and Applications V, 2007:1217-1222.
    [48] Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.X m quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8):2931.
    [49] Li Z G, Liu G J, You M H, et al. 2.0m room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure[J]. Laser Physics, 2009, 19(6):1230-1233.
    [50] Chen J, Kipshidze G, Shterengas L. Diode lasers with asymmetric waveguide and improved beam properties[J]. Applied Physics Letters, 2010, 96(24):151.
    [51] Shterengas L, Liang R, Kipshidze G, et al. Cascade type-I quantum well diode lasers emitting 960-mW near 3-m[J]. Applied Physics Letters, 2014, 105(16):797-800.
    [52] Hosoda T, Feng T, Shterengas L, et al. High power cascade diode lasers emitting near 2-m[J]. Applied Physics Letters, 2016, 108(13):1089.
  • [1] 颜秉政, 穆西魁, 安嘉硕, 齐瑶瑶, 丁洁, 白振旭, 王雨雷, 吕志伟.  2 μm单纵模全固态脉冲激光技术研究进展(封面文章·特邀) . 红外与激光工程, 2024, 53(2): 20230730-1-20230730-16. doi: 10.3788/IRLA20230730
    [2] 张业奇, 王贞福, 李特, 陈琅, 张佳晨, 吴顺华, 刘嘉辰, 杨国文.  双应力交叉步进加速退化试验下大功率半导体激光器寿命预测方法 . 红外与激光工程, 2023, 52(5): 20220592-1-20220592-10. doi: 10.3788/IRLA20220592
    [3] 李森森, 张 宇, 徐应强, 牛智川, 闫秀生.  2 μm锑化物半导体激光器光纤输出模块 . 红外与激光工程, 2022, 51(8): 20220493-1-20220493-2. doi: 10.3788/IRLA20220493
    [4] 杨婷婷, 陈红山, 刘贺言, 郝婧婕, 张金伟.  基于孤子自压缩的高功率少周期2 μm激光产生(特邀) . 红外与激光工程, 2021, 50(8): 20210355-1-20210355-7. doi: 10.3788/IRLA20210355
    [5] 刘高佑, 魏迪生, 陈毅, 杨科, 密淑一, 李俊辉, 杨超, 王瑞雪, 段小明, 戴通宇, 姚宝权, 鞠有伦, 王月珠.  2 µm单掺Ho固体激光器及ZnGeP2晶体应用于中长波输出的研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201056-1-20201056-7. doi: 10.3788/IRLA20201056
    [6] 杨成奥, 张一, 尚金铭, 陈益航, 王天放, 佟海保, 任正伟, 张宇, 徐应强, 牛智川.  2~4 μm中红外锑化物半导体激光器研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201075-1-20201075-9. doi: 10.3788/IRLA20201075
    [7] 李翔, 汪宏, 乔忠良, 张宇, 牛智川, 佟存柱, 刘重阳.  2 μm GaSb基被动锁模激光器重复频率变化的研究(特邀) . 红外与激光工程, 2020, 49(12): 20201054-1-20201054-5. doi: 10.3788/IRLA20201054
    [8] 李翔, 汪宏, 乔忠良, 张宇, 徐应强, 牛智川, 佟存柱, 刘重阳.  2 μm InGaSb/AlGaAsSb量子阱激光器理想因子的研究 . 红外与激光工程, 2018, 47(5): 503001-0503001(5). doi: 10.3788/IRLA201847.0503001
    [9] 张海鹍, 黄继阳, 周城, 夏伟, 何京良.  2 μm波段Tm:YAP晶体半导体可饱和吸收镜连续波锁模激光器 . 红外与激光工程, 2018, 47(5): 505003-0505003(4). doi: 10.3788/IRLA201847.0505003
    [10] 张龙, 陈建生, 高静, 檀慧明, 武晓东.  大功率半导体激光器驱动电源及温控系统设计 . 红外与激光工程, 2018, 47(10): 1005003-1005003(7). doi: 10.3788/IRLA201847.1005003
    [11] 张一, 张宇, 杨成奥, 谢圣文, 邵福会, 尚金铭, 黄书山, 袁野, 徐应强, 倪海桥, 牛智川.  3~4 μm锑化物带间级联激光器研究进展(特邀) . 红外与激光工程, 2018, 47(10): 1003003-1003003(7). doi: 10.3788/IRLA201847.1003003
    [12] 尚金铭, 张宇, 杨成奥, 谢圣文, 黄书山, 袁野, 张一, 邵福会, 徐应强, 牛智川.  GaSb基光泵浦半导体碟片激光器的研究进展(特邀) . 红外与激光工程, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004
    [13] 张阔, 陈飞, 李若斓, 杨贵龙.  大功率CO2激光器输出窗口热性能分析 . 红外与激光工程, 2017, 46(2): 205005-0205005(6). doi: 10.3788/IRLA201645.0205005
    [14] 宋玉志, 宋甲坤, 张祖银, 李康文, 徐云, 宋国峰, 陈良惠.  大功率及高转换效率2.1μm GaInSb/AlGaAsSb量子阱激光器 . 红外与激光工程, 2016, 45(5): 505003-0505003(4). doi: 10.3788/IRLA201645.0505003
    [15] 陈河, 陈胜平, 侯静, 姜宗福.  1.06μm注入锁定增益开关半导体激光器特性分析与功率放大研究 . 红外与激光工程, 2015, 44(10): 2900-2905.
    [16] 安宁, 刘国军, 李占国, 李辉, 席文星, 魏志鹏, 马晓辉.  2 μm半导体激光器有源区量子阱数的优化设计 . 红外与激光工程, 2015, 44(7): 1969-1974.
    [17] 胡晓冬, 徐元飞, 姚建华, 于成松.  大功率半导体直接输出激光加工系统开发 . 红外与激光工程, 2015, 44(7): 1996-2001.
    [18] 张阔, 陆君, 杨贵龙, 陈飞, 李殿军, 郑长彬, 郭劲.  大功率TEA CO2 激光远场发散角评估方法 . 红外与激光工程, 2015, 44(8): 2286-2291.
    [19] 金光勇, 宋雪迪, 吴春婷, 陈薪羽, 于凯.  室温6.11 mJ脉冲LD单端抽运Tm:YAG调Q激光器 . 红外与激光工程, 2014, 43(10): 3252-3256.
    [20] 田超群, 魏冬寒, 刘磊, 高婷, 赵博, 李辉, 曲轶.  中红外半导体激光器GaSb基材料的刻蚀研究 . 红外与激光工程, 2013, 42(12): 3363-3366.
  • 加载中
计量
  • 文章访问数:  573
  • HTML全文浏览量:  92
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-07
  • 修回日期:  2018-04-10
  • 刊出日期:  2018-05-25

2 μm GaSb基大功率半导体激光器研究进展

doi: 10.3788/IRLA201847.0503003
    作者简介:

    谢圣文(1991-),博士生,主要从事GaSb基大功率激光器方面的研究。Email:xsw@semi.ac.cn

基金项目:

国家自然科学基金(61790580,61435012);国家973计划(2014CB643903)

  • 中图分类号: TN248

摘要: 2 m波段GaSb基大功率激光器在诸多领域具有广阔的应用前景,如气体探测、医疗美容、激光加工等。基于功率提升,综述和讨论了2 m波段GaSb基激光器结构的发展过程,介绍了目前国内外的研究状况,讨论和分析了GaSb基激光器提升功率、效率的主要技术问题。并详细介绍了该领域近年来在传统激光器中引入的两种新结构,分析了其技术优势。指出目前2 m波段GaSb基大功率激光器面临瓶颈,并讨论了其发展趋势。

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回