留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快光纤激光器中的周期分岔研究进展(特邀)

赵鹭明 束朝杰 王郁飞 李雷

赵鹭明, 束朝杰, 王郁飞, 李雷. 超快光纤激光器中的周期分岔研究进展(特邀)[J]. 红外与激光工程, 2018, 47(8): 803002-0803002(9). doi: 10.3788/IRLA201847.0803002
引用本文: 赵鹭明, 束朝杰, 王郁飞, 李雷. 超快光纤激光器中的周期分岔研究进展(特邀)[J]. 红外与激光工程, 2018, 47(8): 803002-0803002(9). doi: 10.3788/IRLA201847.0803002
Zhao Luming, Shu Chaojie, Wang Yufei, Li Lei. Research progress of period doubling bifurcation in ultrafast fiber lasers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803002-0803002(9). doi: 10.3788/IRLA201847.0803002
Citation: Zhao Luming, Shu Chaojie, Wang Yufei, Li Lei. Research progress of period doubling bifurcation in ultrafast fiber lasers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803002-0803002(9). doi: 10.3788/IRLA201847.0803002

超快光纤激光器中的周期分岔研究进展(特邀)

doi: 10.3788/IRLA201847.0803002
基金项目: 

江苏省高等学校自然科学研究重大项目(17KJA416004);国家自然科学基金(11674133);江苏高校优势学科建设工程资助项目(PAPD);江苏省研究生科研与实践创新计划(KYCX17_1653,KYCX17_1655)

详细信息
    作者简介:

    赵鹭明(1976-),男,教授,博士,主要从事锁模光纤激光器、光纤放大器、光孤子动力学等方面的研究。Email:zhaoluming@jsnu.edu.cn

  • 中图分类号: O436

Research progress of period doubling bifurcation in ultrafast fiber lasers (invited)

  • 摘要: 超快光纤激光器已成为超短脉冲光源的理想选择对象并得到实际应用。由于光束直径受限于光纤截面及光与光纤的长相互作用距离,非线性效应不可避免。在非线性效应导致的脉冲分裂出现之前,在合适的条件下超快光纤激光器可以实现输出的周期分岔。周期分岔是指输出脉冲的参数以腔长的倍数为固定周期重复出现。周期分岔是非线性系统的本征特性之一,广泛存在于所有非线性系统中。文中对超快光纤激光器中的周期分岔的研究进展进行了详细综述,重点分析了不同色散区间周期分岔的表征特性,并对矢量孤子的周期分岔特性,以及多脉冲情况下的周期分岔特性进行讨论。
  • [1] May Robert M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261(5560):459-467.
    [2] Lee ChangHee, Yoon T, Shin S Y. Period doubling and chaos in a directly modulated laser diode[J]. Applied Physics Letters, 1985, 46(1):95-97.
    [3] Courtney Michael, Jiao Hong, Spellmeyer Neal, et al. Closed orbit bifurcations in continuum stark spectra[J]. Physical Review Letters, 1995, 74(9):1538-1541.
    [4] Braun R, Feudel F, Guzdar P. Route to chaos for a two-dimensional externally driven flow[J]. Physical Review E Statistical Physics Plasmas Fluids Related Interdisciplinary Topics, 1998, 58(2):1927-1932.
    [5] Derighetti B, Ravani M, Stoop R, et al. Period-doubling lasers as small-signal detectors[J]. Physical Review Letters, 1985, 55(17):1746-1748.
    [6] Lamela H, Carpintero G, Mancebo F J. Period tripling and chaos in the dynamic behavior of directly modulated diode lasers[J]. IEEE Journal of Quantum Electronics, 1998, 34(10):1797-1801.
    [7] Sucha G, Bolton S R, Weiss S, et al. Nonlinear dynamics of additive pulse mode-locked lasers:period doubling and chaos[C]//Quantum Electronics Laser Science Conference, JTuC6, 1993.
    [8] Tamura K, Doerr C R, Haus H A, et al. Soliton fiber ring laser stabilization and tuning with a broad intracavity filter[J]. IEEE Photonics Technology Letters, 1994, 6(6):697-699.
    [9] Zhao L M, Tang D Y, Lin F, et al. Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity[J]. Optics Express, 2004, 12(19):4573-4578.
    [10] Akhmediev N, Soto-Crespo J M, Town G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers:Complex Ginzburg-Landau equation approach[J]. Physical Review E Statistical Nonlinear Soft Matter Physics, 2001, 63(2):056602.
    [11] Tang D Y, Zhao L M, Zhao B, et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers[J]. Physical Review, 2005, 72(4):043816.
    [12] Kafka J D, Hall D W, Baer T. Mode-locked erbium-doped fiber laser with soliton pulse shaping[J]. Optics Letters, 1989, 14(22):1269-1271.
    [13] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres. I. Anomalous dispersion[J]. Applied Physics Letters, 1973, 23(3):142-144.
    [14] Tamura K, Haus H A, Ippen E P. Self-starting additive pulse mode-locked erbium fibre ring laser[J]. Electronics Letters, 1992, 28(24):2226-2228.
    [15] Zakharov V E, Shabat A B. Exact theory of two dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J]. Journal of Experimental and Theoretical Physics, 1972, 34(1):62-69.
    [16] Fermann M E, Hofer M, Haberl F, et al. Femtosecond fibre laser[J]. Electronics Letters, 1990, 26(20):1737-1738.
    [17] Ilday F , Wise F W, Sosnowski T. High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror[J]. Optical Letters, 2002, 27(17):1531-1533.
    [18] Zhao L M, Tang D Y, Wu J. Gain-guided soliton in a positive group dispersion fiber laser[J]. Optical Letters, 2006, 31(12):1788-1790.
    [19] Kieu K, Renninger W H, Chong A, et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optical Letters, 2009, 34(5):593-595.
    [20] Lefrancois S, Kieu K, Deng Y, et al. Scaling of dissipative-soliton fiber lasers to megawatt peak powers by use of large area photonic-crystal fiber[J]. Optical Letters, 2010, 35(10):1569-1571.
    [21] Zhao L M, Tang D Y, Cheng T H, et al. Generation of multiple gain-guided solitons in a fiber laser[J]. Optical Letters, 2007, 32(11):1581-1583.
    [22] Sotocrespo J M, Grapinet M, Grelu P, et al. Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser[J]. Physical Review E Statistical Nonlinear Soft Matter Physics, 2004, 70(2):066612.
    [23] Zhao L M, Tang D Y, Zhao B. Period-doubling and quadrupling of bound solitons in a passively mode-locked fiber laser[J]. Optics Communications, 2005, 252(1-3):167-172.
    [24] Zhao L M, Tang D Y, Cheng T H, et al. Period-doubling of multiple solitons in a passively mode-locked fiber laser[J]. Optics Communications, 2007, 273(2):554-559.
    [25] Kelly S M J. Characteristic sideband instability of periodically amplified average soliton[J]. Electronics Letters, 1992, 28(8):806-807.
    [26] Zhao L M, Tang D Y, Cheng T H, et al. Period-doubling of dispersion-managed solitons in an Erbium-doped fiber laser at around zero dispersion[J]. Optics Communications, 2007, 278(2):428-433.
    [27] Zhao L M, Tang D Y, Wu X, et al. Period-doubling of gain-guided solitons in fiber lasers of large net normal dispersion[J]. Optics Communications, 2008, 281(13):3557-3560.
    [28] Cundiff S T, Collings B C, Akhmediev N N, et al. Observation of polarization-locked vector solitons in an optical fiber[J]. Physical Review Letters, 1999, 82(20):3988-3991.
    [29] Zhao L M, Tang D Y, Zhang H, et al. Soliton trapping in fiber lasers[J]. Optics Express, 2008, 16(13):9528-9533.
    [30] Zhao L M, Tang D Y, Zhang H, et al. Period-doubling of vector solitons in a ring fiber laser[J]. Optics Communications, 2008, 281(22):5614-5617.
    [31] Song Y F, Liang Z M, Zhang H, et al. Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser[J]. IEEE Photonics Journal, 2017, 9(5):1-8.
    [32] Wu Z C, Fu S N, Jiang K, et al. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton[J]. Scientific Reports, 2016, 6:34844.
    [33] Tang D Y, Zhao L M, Lin F. Numerical studies of routes to chaos in passively mode locked fiber soliton ring lasers with dispersion-managed cavity[J]. Europhysics Letters, 2005, 71(1):56-62.
    [34] Zhang Qian, Li Lei, Tang D Y, et al. Period-timing bifurcations in a dispersion-managed fiber laser with zero group velocity dispersion[J]. IEEE Photonics Journal, 2016, 8(6):1504608.
    [35] Zhao J, Li W X, Bai D B, et al. Self-referenced f-to-2f beat note of a period-doubling mode-locked Yb-fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(5):459-461.
    [36] Wu Haoyu, Ma Ting, Lu Qiao, et al. Optical frequency combs based on a period-doubling mode-locked Er-doped fiber laser[J]. Optics Express, 2018, 26(1):577-585.
  • [1] 王小林, 王鹏, 吴函烁, 叶云, 曾令筏, 杨保来, 奚小明, 张汉伟, 史尘, 习锋杰, 王泽锋, 韩凯, 周朴, 许晓军, 陈金宝.  LD泵浦高亮度光纤激光器:设计、仿真与实现(特邀) . 红外与激光工程, 2023, 52(6): 20230242-1-20230242-29. doi: 10.3788/IRLA20230242
    [2] 刘雨晴, 孙洪波.  非线性激光制造的进展与应用(特邀) . 红外与激光工程, 2022, 51(1): 20220005-1-20220005-15. doi: 10.3788/IRLA20220005
    [3] 郭婕, 闫东钰, 毕根毓, 丰傲然, 刘博文, 储玉喜, 宋有建, 胡明列.  色散管理光纤锁模激光器在近零色散域的非线性优化 . 红外与激光工程, 2022, 51(12): 20220226-1-20220226-7. doi: 10.3788/IRLA20220226
    [4] 杨振, 王栎沣, 靳慧敏, 王志渊, 徐培鹏, 张巍, 陈伟伟, 戴世勋.  硫系玻璃集成光子器件综述(特邀) . 红外与激光工程, 2022, 51(3): 20220152-1-20220152-21. doi: 10.3788/IRLA20220152
    [5] 高玉欣, 陈吉祥, 张泽贤, 战泽宇, 罗智超.  1.7 μm全光纤锁模脉冲掺铥光纤激光器研究 . 红外与激光工程, 2022, 51(7): 20220234-1-20220234-6. doi: 10.3788/IRLA20220234
    [6] 周朴, 姚天甫, 范晨晨, 李阳, 郝修路, 陈薏竹, 马小雅, 许将明, 肖虎, 冷进勇, 刘伟.  拉曼光纤激光:50年的历程、现状与趋势(特邀) . 红外与激光工程, 2022, 51(1): 20220015-1-20220015-19. doi: 10.3788/IRLA20220015
    [7] 战泽宇, 陈吉祥, 刘萌, 罗爱平, 徐文成, 罗智超.  1.7 μm超快光纤激光器研究进展(特邀) . 红外与激光工程, 2022, 51(1): 20210850-1-20210850-15. doi: 10.3788/IRLA20210850
    [8] 赵云, 杨原牧.  非线性超构表面:谐波产生与超快调控 . 红外与激光工程, 2020, 49(9): 20201037-1-20201037-14. doi: 10.3788/IRLA20201037
    [9] 郭波.  基于二维材料非线性效应的多波长超快激光器研究进展(特邀) . 红外与激光工程, 2019, 48(1): 103002-0103002(22). doi: 10.3788/IRLA201948.0103002
    [10] 李润敏, 宋有建, 师浩森, 戴雯, 李跃鹏, 武子铃, 田昊晨, 柴路, 胡明列.  全保偏非线性偏振环形镜锁模掺铒光纤激光器 . 红外与激光工程, 2018, 47(8): 803006-0803006(6). doi: 10.3788/IRLA201847.0803006
    [11] 王郁飞, 李雷, 赵鹭明.  时分复制脉冲放大技术在超快光纤激光器中的应用研究进展 . 红外与激光工程, 2018, 47(8): 803010-0803010(10). doi: 10.3788/IRLA201847.0803010
    [12] 柴志军, 高亚臣.  CdS0.2Se0.8纳米晶掺杂玻璃的超快非线性吸收特性 . 红外与激光工程, 2017, 46(3): 321004-0321004(5). doi: 10.3788/IRLA201746.0321004
    [13] 宋瑛林, 李中国.  硝基苯超快非线性折射效应及机理研究 . 红外与激光工程, 2017, 46(5): 502001-0502001(5). doi: 10.3788/IRLA201746.0502001
    [14] 贺静波, 许江湖.  无色散光纤信道的非线性演化 . 红外与激光工程, 2016, 45(4): 422004-0422004(5). doi: 10.3788/IRLA201645.0422004
    [15] 康子建, 谷一英, 朱文武, 范峰, 胡晶晶, 赵明山.  利用DFB激光器非线性的高线性射频光传输链路 . 红外与激光工程, 2016, 45(8): 806004-0806004(5). doi: 10.3788/IRLA201645.0806004
    [16] 王现彬, 李宁, 卢智嘉, 杨洁, 曹鹤飞.  三种载波抑制归零码光调制格式性能 . 红外与激光工程, 2014, 43(11): 3694-3698.
    [17] 左林, 杨爱英, 赖俊森, 孙雨南.  非线性偏振旋转锁模光纤激光器数值模型 . 红外与激光工程, 2013, 42(1): 57-62.
    [18] 陶世兴, 杨丽玲, 赵新才, 胡腾, 李建中, 彭其先.  双曲正割脉冲在光纤中传输的非线性效应 . 红外与激光工程, 2013, 42(10): 2669-2671.
    [19] 邓大鹏, 曹东东, 朱峰, 黄凯, 李将.  40 Gbit/s全光异或门性能仿真 . 红外与激光工程, 2013, 42(4): 1069-1073.
    [20] 杨秀峰, 董凤娟, 童峥嵘, 曹晔.  利用非线性偏振旋转效应的可调谐多波长光纤激光器 . 红外与激光工程, 2012, 41(1): 53-57.
  • 加载中
计量
  • 文章访问数:  462
  • HTML全文浏览量:  89
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-05-15
  • 刊出日期:  2018-08-25

超快光纤激光器中的周期分岔研究进展(特邀)

doi: 10.3788/IRLA201847.0803002
    作者简介:

    赵鹭明(1976-),男,教授,博士,主要从事锁模光纤激光器、光纤放大器、光孤子动力学等方面的研究。Email:zhaoluming@jsnu.edu.cn

基金项目:

江苏省高等学校自然科学研究重大项目(17KJA416004);国家自然科学基金(11674133);江苏高校优势学科建设工程资助项目(PAPD);江苏省研究生科研与实践创新计划(KYCX17_1653,KYCX17_1655)

  • 中图分类号: O436

摘要: 超快光纤激光器已成为超短脉冲光源的理想选择对象并得到实际应用。由于光束直径受限于光纤截面及光与光纤的长相互作用距离,非线性效应不可避免。在非线性效应导致的脉冲分裂出现之前,在合适的条件下超快光纤激光器可以实现输出的周期分岔。周期分岔是指输出脉冲的参数以腔长的倍数为固定周期重复出现。周期分岔是非线性系统的本征特性之一,广泛存在于所有非线性系统中。文中对超快光纤激光器中的周期分岔的研究进展进行了详细综述,重点分析了不同色散区间周期分岔的表征特性,并对矢量孤子的周期分岔特性,以及多脉冲情况下的周期分岔特性进行讨论。

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回