留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤二维材料集成器件的脉冲激光器及外场调控(特邀)

毛梦涛 陈锦辉 丁梓轩 徐飞

毛梦涛, 陈锦辉, 丁梓轩, 徐飞. 基于光纤二维材料集成器件的脉冲激光器及外场调控(特邀)[J]. 红外与激光工程, 2018, 47(8): 803003-0803003(13). doi: 10.3788/IRLA201847.0803003
引用本文: 毛梦涛, 陈锦辉, 丁梓轩, 徐飞. 基于光纤二维材料集成器件的脉冲激光器及外场调控(特邀)[J]. 红外与激光工程, 2018, 47(8): 803003-0803003(13). doi: 10.3788/IRLA201847.0803003
Mao Mengtao, Chen Jinhui, Ding Zixuan, Xu Fei. Pulsed laser based on two-dimensional material optical fiber integrated device and external control (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803003-0803003(13). doi: 10.3788/IRLA201847.0803003
Citation: Mao Mengtao, Chen Jinhui, Ding Zixuan, Xu Fei. Pulsed laser based on two-dimensional material optical fiber integrated device and external control (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 803003-0803003(13). doi: 10.3788/IRLA201847.0803003

基于光纤二维材料集成器件的脉冲激光器及外场调控(特邀)

doi: 10.3788/IRLA201847.0803003
基金项目: 

科技部重点研发计划(2017YFC1403803);国家自然科学基金面上项目(61475069)

详细信息
    作者简介:

    毛梦涛(1993-),男,硕士生,主要从事光纤激光器方面的研究。Email:mtmaonju@163.com

  • 中图分类号: TN248.1

Pulsed laser based on two-dimensional material optical fiber integrated device and external control (invited)

  • 摘要: 脉冲光纤激光器在加工、光通信、生物医学、非线性研究等领域有很大的应用前景,所以得到了广泛的关注。为了得到脉冲激光输出需要使用饱和吸收体,其中二维材料具有独特的光电特性,在光学和光电器件中已经有很多的应用,尤其是二维材料具备良好的饱和吸收,制备工艺简单,易与光纤系统集成,工作波长宽等特点,被广泛地应用于脉冲光纤激光器。文中回顾了二维材料和光纤的集成方式以及相应的脉冲光纤激光器的输出特性,并且对这类脉冲光纤激光器进行了外场调控的研究。
  • [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers:current status and future perspectives[Invited] [J]. Journal of the Optical Society of America B, 2010, 27(11):B63-B92.
    [2] Takubo Y, Yamashita S. High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG[J]. Optics Express, 2013, 21(4):5130-5139.
    [3] Sumiyoshi T, Sekita H, Arai T, et al. High-power continuous-wave 3-and 2-m cascade Ho3+:ZBLAN fiber laser and its medical applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4):936-943.
    [4] Han Y G, Lee S B. Flexibly tunable multiwavelength erbium-doped fiber laser based on four-wave mixing effect in dispersion-shifted fibers[J]. Optics Express, 2005, 13(25):10134-10139.
    [5] Hajireza P, Forbrich A, Zemp R. In-vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source[J]. Biomedical Optics Express, 2014, 5(2):539.
    [6] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666.
    [7] Bao Q, Han Z, Yu W, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19):3077-3083.
    [8] Garmire E. Resonant optical nonlinearities in semiconductors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 6(6):1094-1110.
    [9] Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6):7249-7260.
    [10] Ijaz S, Mahendru A, Sanderson D. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE Journal of Quantum Electronics, 2002, 26(4):760-769.
    [11] Boggess T, Bohnert K, Mansour K, et al. Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon[J]. IEEE Journal of Quantum Electronics, 1986, 22(2):360-368.
    [12] Du J, Wang Q, Jiang G, et al. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction[J]. Sci Rep, 2014, 4(4):6346.
    [13] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183.
    [14] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
    [15] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197.
    [16] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
    [17] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204.
    [18] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions[J]. Physical Review Letters, 2007, 98(10):106803.
    [19] Qi X L, Zhang S C. Topological insulators and superconductors[J]. Review of Modern Physics, 2010, 83(4):175-179.
    [20] Yl C, Jg A, Jh C, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science, 2009, 325(5937):178.
    [21] Zhang H, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):438-442.
    [22] Bernard F, Zhang H, Gorza S P, et al. Towards mode-locked fiber laser using topological insulators[C]//Proceedings of The Nonlinear Photonics, F, 2012.
    [23] Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors[J]. ACS Nano, 2012, 6(1):74-80.
    [24] Wang K, Wang J, Fan J, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10):9260.
    [25] Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5):372.
    [26] Chen J H, Deng G Q, Yan S C, et al. Microfiber-coupler-assisted control of wavelength tuning for Q-switched fiber laser with few-layer molybdenum disulfide nanoplates[J]. Optics Letters, 2015, 40(15):3576-3579.
    [27] Dong M, Wang Y, Ma C, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5(7965):7965.
    [28] Song Y W, Jang S Y, Han W S, et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J]. Applied Physics Letters, 2010, 96(5):183.
    [29] Lee E J, Sun Y C, Jeong H, et al. Active control of all-fibre graphene devices with electrical gating[J]. Nature Communications, 2015, 6:6851.
    [30] Jung M, Lee J, Koo J, et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator[J]. Optics Express, 2014, 22(7):7865.
    [31] Liu M, Zheng X W, Qi Y L, et al. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser[J]. Optics Express, 2014, 22(19):22841-22846.
    [32] Yan P, Lin R, Ruan S, et al. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film[J]. Optics Express, 2015, 23(1):154-164.
    [33] Luo Z C, Liu M, Liu H, et al. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber[J]. Optics Letters, 2013, 38(24):5212-5215.
    [34] Chen Y, Ming Y, Guo W, et al. Temperature characteristics of microfiber coil resonators embedded in Teflon[C]//Communications and Photonics Conference and Exhibition, 2011 ACP Asia, F, 2012.
    [35] Li C, Chen J H, Yan S C, et al. A fiber laser using graphene-integrated 3-D microfiber coil[J]. IEEE Photonics Journal, 2016, 8(1):1-7.
    [36] Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator[J]. Applied Physics Letters, 2008, 92(10):5742.
    [37] Xu F, Brambilla G. Demonstration of a refractometric sensor based on optical microfiber coil resonator[C]//Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science CLEO/QELS, 2008.
    [38] Xu F, Brambilla G. Embedding optical microfiber coil resonators in Teflon[J]. Optics Letters, 2007, 32(15):2164-2166.
    [39] Xu F, Brambilla G. Manufacture of 3-D microfiber coil resonators[J]. IEEE Photonics Technology Letters, 2007, 19(19):1481-1483.
    [40] Xu F, Brambilla G, Feng J, et al. Mathematical model for manufacturing microfiber coil resonators[J]. Optical Engineering, 2010, 49(4):044001.
    [41] Xu F, Horak P, Brambilla G. Optical microfiber coil resonator refractometric sensor[J]. Optics Express, 2007, 15(12):7888.
    [42] Xu F, Horak P, Brambilla G. Optimized design of microcoil resonators[J]. Journal of Lightwave Technology, 2007, 25(6):1561-1567.
    [43] Xu F, Horak P, Brambilla G. Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator[J]. Applied Optics, 2007, 46(4):570-573.
    [44] Xu F, Horak P, Brambilla G. A simplified way to manufacture high-Q microfiber coil resonators by controlling the input/output coupling[C]//The Pacific Rim Conference on Lasers and Electro-Optics, F, 2007.
    [45] Xu F, Wang Q, Zhou J F, et al. Dispersion study of optical nanowire microcoil resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(4):1102-1106.
    [46] Yan S, Zheng B, Chen J, et al. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator[J]. Applied Physics Letters, 2015, 42(5):57.
    [47] Luo Z, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21):3709.
    [48] Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 2011, 98(7):435.
    [49] Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. Acs Nano, 2010, 4(2):803-810.
    [50] Zhang H, Tang D, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11):51.
    [51] Bao Q, Zhang H, Ni Z, et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J]. Nano Research, 2011, 4(3):297-307.
    [52] Ferrari A C, Popa D, Kelleher E J R, et al. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Optics Express, 2012, 20(22):25077.
    [53] Popa D, Sun Z, Torrisi F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Applied Physics Letters, 2010, 97(20):831.
    [54] Sobon G, Sotor J, Abramski K M. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz[J]. Applied Physics Letters, 2012, 100(16):3077-3083.
    [55] Sun Z, Popa D, Hasan T, et al. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser[J]. Nano Research, 2010, 3(9):653-660.
    [56] Zhang H, Bao Q, Tang D, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker[J]. Applied Physics Letters, 2009, 95(14):51.
    [57] Zhang H, Tang D Y, Zhao L M, et al. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Optics Express, 2009, 17(20):17630-17635.
    [58] Zhao L M, Tang D Y, Zhang H, et al. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene[J]. Optics Letters, 2010, 35(21):3622-3624.
    [59] Chen Y, Zhao C, Chen S, et al. Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):315-322.
    [60] Lin Y H, Yang C Y, Lin S F, et al. Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles[J]. Laser Physics Letters, 2014, 11(5):055107.
    [61] Luo A P, Zhao C J, Zhang H, et al. Femtosecond pulse generation from a topological insulator mode-locked fiber laser[J]. Optics Express, 2014, 22(6):6868-6873.
    [62] Luo Z, Huang Y, Weng J, et al. 1.06m Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber[J]. Optics Express, 2013, 21(24):29516-29522.
    [63] Sotor J, Sobon G, Macherzynski W, et al. Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber[J]. Laser Physics Letters, 2014, 11(5):055102.
    [64] Yu Z, Song Y, Tian J, et al. High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film[J]. Optics Express, 2014, 22(10):11508.
    [65] Zhao C, Zhang H, Qi X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101(21):118.
    [66] Zhao C, Zou Y, Chen Y, et al. Wavelength-tunable picosecond soliton fiber laser with Topological Insulator:Bi2Se3 as a mode locker[J]. Optics Express, 2012, 20(25):27888-27895.
    [67] Chen B, Zhang X, Wu K, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20):26723-26737.
    [68] Lan C, Li C, Xia H, et al. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber[J]. Optics Express, 2014, 22(14):17341-17348.
    [69] Zhang M, Howe R C, Woodward R I, et al. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser[J]. Nano Research, 2015, 8(5):1522-1534.
    [70] Woodward R I, Kelleher E J, Hower R C, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25):31113-31122.
    [71] Liu H, Luo A P, Wang F Z, et al. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber[J]. Optics Letters, 2014, 39(15):4591-4594.
    [72] Huang Y, Luo Z, Li Y, et al. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber[J]. Optics Express, 2014, 22(21):25258-25266.
    [73] Luo Z, Wu D, Xu B, et al. Two-dimensional material-based saturable absorbers:towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 2016, 8(2):1066.
    [74] Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation[J]. Optics Express, 2015, 23(10):12823-12833.
    [75] Mu H, Lin S, Wang Z, et al. Pulsed lasers:black phosphorus-polymer composites for pulsed lasers (advanced optical materials 10/2015)[J]. Advanced Optical Materials, 2015, 3(10):1447-1453.
    [76] Sotor J, Sobon G, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16):3885.
    [77] Sotor J, Sobon G, Macherzynski W, et al. Black phosphorus saturable absorber for ultrashort pulse generation[J]. Applied Physics Letters, 2015, 107(5):440-449.
    [78] Yu H, Zheng X, Yin K, et al. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets[J]. Optical Materials Express, 2016, 6(2):603.
    [79] Yeom D I, Jeong H, Oh K, et al. Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes[J]. Optics Express, 2014, 22(19):23732-23742.
    [80] Luo Z C, Liu M, Guo Z N, et al. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser[J]. Optics Express, 2015, 23(15):20030-20039.
    [81] Park K, Lee J, Lee Y T, et al. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction[J]. Annalen Der Physik, 2015, 527(11-12):770-776.
    [82] Sotor J, Sobon G, Abramski K M. Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator[J]. Optics Express, 2014, 22(11):13244.
    [83] Sotor J, Sobon G, Grodecki K, et al. Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator[J]. Applied Physics Letters, 2014, 104(25):3077-3083.
    [84] Li C, Chen J H, Wang W S, et al. Manipulation of nonlinear optical properties of graphene bonded fiber devices by thermally engineering fermi-dirac distribution[J]. Advanced Optical Materials, 2017, 5(21):10.1002/adom.201700630.
  • [1] 尹志珺, 王振兴, 李荃, 宋仁康, 邓晓, 雷李华.  声子极化激元干涉条纹周期的精密测量研究 . 红外与激光工程, 2023, 52(12): 20230414-1-20230414-9. doi: 10.3788/IRLA20230414
    [2] 刘宁, 周谷禹, 杨夕, 徐纪鹏, 洪琦琳, 黄先燕, 张检发, 刘肯, 朱志宏.  Si3N4/WS2/Al2O3三明治型纳米激光器结构参数优化 . 红外与激光工程, 2023, 52(6): 20230196-1-20230196-7. doi: 10.3788/IRLA20230196
    [3] 常琦, 侯天悦, 邓宇, 常洪祥, 龙金虎, 马鹏飞, 粟荣涛, 马阎星, 周朴.  基于二维光场计算的400束规模激光相干合成 . 红外与激光工程, 2022, 51(5): 20220276-1-20220276-2. doi: 10.3788/IRLA20220276
    [4] 贾欣宇, 兰长勇, 李春.  二维材料在红外探测器中的应用最新进展(特邀) . 红外与激光工程, 2022, 51(7): 20220065-1-20220065-16. doi: 10.3788/IRLA20220065
    [5] 胡文彬, 吴丰, 甘维兵, 李盛, 陈钢, 艾凌云.  基于二维激光扫描技术的罐道检测算法 . 红外与激光工程, 2021, 50(10): 20200480-1-20200480-7. doi: 10.3788/IRLA20200480
    [6] 陈红富, 罗曼, 沈倪明, 徐腾飞, 秦嘉怡, 胡伟达, 陈效双, 余晨辉.  二维层状材料异质结光电探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211018-1-20211018-11. doi: 10.3788/IRLA20211018
    [7] 许航瑀, 王鹏, 陈效双, 胡伟达.  二维半导体红外光电探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211017-1-20211017-14. doi: 10.3788/IRLA20211017
    [8] 祖嘉琦, 武帅, 张海涛, 耿东晛, 卢姁.  光纤饱和吸收体掺镱全光纤化激光器 . 红外与激光工程, 2020, 49(6): 20190382-1-20190382-6. doi: 10.3788/IRLA20190382
    [9] 朱久泰, 郭万龙, 刘锋, 王林, 陈效双.  基于光热载流子调控的二维材料红外与太赫兹探测器研究进展 . 红外与激光工程, 2020, 49(1): 0103001-0103001(10. doi: 10.3788/IRLA202049.0103001
    [10] 李健淋, 闫理贺, 司金海, 侯洵.  新型二维材料碳化钛纳米片光限幅特性研究 . 红外与激光工程, 2019, 48(11): 1103002-1103002(5). doi: 10.3788/IRLA201948.1103002
    [11] 宋俊玲, 饶伟, 王广宇, 辛明原.  燃烧流场温度二维重建多吸收谱线重建方法 . 红外与激光工程, 2019, 48(3): 306004-0306004(7). doi: 10.3788/IRLA201948.0306004
    [12] 郭波.  基于二维材料非线性效应的多波长超快激光器研究进展(特邀) . 红外与激光工程, 2019, 48(1): 103002-0103002(22). doi: 10.3788/IRLA201948.0103002
    [13] 陈红江, 聂晓明, 王梦成.  基于二维激光多普勒测速仪的车载组合导航系统 . 红外与激光工程, 2018, 47(12): 1217008-1217008(7). doi: 10.3788/IRLA201847.1217008
    [14] 张燕, 赵会民, 刘作军, 杨鹏.  应用二维激光雷达的地形识别系统设计 . 红外与激光工程, 2018, 47(8): 830002-0830002(8). doi: 10.3788/IRLA201847.0830002
    [15] 张海鹍, 黄继阳, 周城, 夏伟, 何京良.  2 μm波段Tm:YAP晶体半导体可饱和吸收镜连续波锁模激光器 . 红外与激光工程, 2018, 47(5): 505003-0505003(4). doi: 10.3788/IRLA201847.0505003
    [16] 李帅, 李野, 李磐, 薛亚飞, 张凯伟, 李广, 王军龙.  基于高功率光纤激光器的清漆剥离实验研究 . 红外与激光工程, 2017, 46(S1): 43-49. doi: 10.3788/IRLA201746.S106008
    [17] 张瑞, 王志斌, 温廷敦, 张敏娟, 李克武.  基于二维激光告警的闪耀光栅设计 . 红外与激光工程, 2016, 45(10): 1020004-1020004(5). doi: 10.3788/IRLA201645.1020004
    [18] 李晓, 张瑞, 王志斌, 黄艳飞.  二维激光告警光学系统设计 . 红外与激光工程, 2015, 44(6): 1806-1810.
    [19] 张敏, 梁雁冰.  二维四边形位置敏感探测器实验研究 . 红外与激光工程, 2013, 42(2): 459-464.
    [20] 陈哲, 吕锋, 葛菁华, 张军, 余健辉, 林宏奂, 隋展.  增强偏振态二维无序分布特性的光学晶体退偏器 . 红外与激光工程, 2013, 42(5): 1258-1264.
  • 加载中
计量
  • 文章访问数:  404
  • HTML全文浏览量:  67
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-05-14
  • 刊出日期:  2018-08-25

基于光纤二维材料集成器件的脉冲激光器及外场调控(特邀)

doi: 10.3788/IRLA201847.0803003
    作者简介:

    毛梦涛(1993-),男,硕士生,主要从事光纤激光器方面的研究。Email:mtmaonju@163.com

基金项目:

科技部重点研发计划(2017YFC1403803);国家自然科学基金面上项目(61475069)

  • 中图分类号: TN248.1

摘要: 脉冲光纤激光器在加工、光通信、生物医学、非线性研究等领域有很大的应用前景,所以得到了广泛的关注。为了得到脉冲激光输出需要使用饱和吸收体,其中二维材料具有独特的光电特性,在光学和光电器件中已经有很多的应用,尤其是二维材料具备良好的饱和吸收,制备工艺简单,易与光纤系统集成,工作波长宽等特点,被广泛地应用于脉冲光纤激光器。文中回顾了二维材料和光纤的集成方式以及相应的脉冲光纤激光器的输出特性,并且对这类脉冲光纤激光器进行了外场调控的研究。

English Abstract

参考文献 (84)

目录

    /

    返回文章
    返回