留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/铜镍铁氧体复合材料的制备及性能研究

马德跃 李晓霞 郭宇翔 曾宇润

马德跃, 李晓霞, 郭宇翔, 曾宇润. 石墨烯/铜镍铁氧体复合材料的制备及性能研究[J]. 红外与激光工程, 2018, 47(9): 921002-0921002(6). doi: 10.3788/IRLA201847.0921002
引用本文: 马德跃, 李晓霞, 郭宇翔, 曾宇润. 石墨烯/铜镍铁氧体复合材料的制备及性能研究[J]. 红外与激光工程, 2018, 47(9): 921002-0921002(6). doi: 10.3788/IRLA201847.0921002
Ma Deyue, Li Xiaoxia, Guo Yuxiang, Zeng Yurun. Research on preparation and properties of graphene/copper nickel ferrite composites[J]. Infrared and Laser Engineering, 2018, 47(9): 921002-0921002(6). doi: 10.3788/IRLA201847.0921002
Citation: Ma Deyue, Li Xiaoxia, Guo Yuxiang, Zeng Yurun. Research on preparation and properties of graphene/copper nickel ferrite composites[J]. Infrared and Laser Engineering, 2018, 47(9): 921002-0921002(6). doi: 10.3788/IRLA201847.0921002

石墨烯/铜镍铁氧体复合材料的制备及性能研究

doi: 10.3788/IRLA201847.0921002
基金项目: 

国家自然科学基金青年科学基金(61405248)

详细信息
    作者简介:

    马德跃(1990-),男,博士生,主要从事光电功能材料方面的研究。Email:madyuexs@163.com

  • 中图分类号: O613.71

Research on preparation and properties of graphene/copper nickel ferrite composites

  • 摘要: 为制备出宽波段磁波衰减材料,采用水热法制备得到了石墨烯/铜镍铁氧体复合材料(CNFRGO),并对其进行SEM、XRD、红外光谱和拉曼光谱表征分析;然后测量其2~18 GHz的电磁参数,并计算其损耗角正切值和反射损耗,进而分析其微波衰减性能;最后,测量其中远红外波段的复折射率,利用测量数据和T矩阵法计算分析其红外波段消光和吸收性能。结果表明,尖晶石型铜镍铁氧体纳米颗粒吸附在还原石墨烯上,粒径大部分约为20 nm;CNFRGO同时具有介电损耗和磁损耗两种机制,其反射损耗低于-10 dB的频宽为3.7 GHz,在11.8 GHz处有峰值-14.7 dB;CNFRGO在近红外波段消光较强主要由散射引起,中远红外波段则主要由吸收决定,而其吸收能力在近红外和中红外波段较强,但在远红外大气窗口内相对较弱。因此,CNFRGO可同时吸收微波和红外辐射,是一种良好的微波与红外兼容材料。
  • [1] Solano E, Perez-Mirabet L, Martinez-Julian F, et al. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles[J]. Journal of Nanoparticle Research, 2012, 14(8):1034-1039.
    [2] Paramasivan P, Venkatesh P. Controllable synthesis of CuFe2O4 nanostructures through simple hydrothermal method in the presence of thioglycolic acid[J]. Physica E:Low-dimensional Systems and Nanostructures, 2016, 84(1):258-262.
    [3] Liu Hongli. Synthesis and adsorption performance of ferrit-graphene composities[D]. Beijing:Beijing University of Chemical Technology, 2013. (in Chinese)
    [4] Sun X, Sheng L, Yang J, et al. Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption[J]. Journal of Materials Science Materials in Electronics, 2017, 13(3):1-9.
    [5] Wang W, Hao Q, Lei W, et al. Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 269(269):250-259.
    [6] Bhattacharya P, Dhibar S, Hatui G, et al. Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper:a potential candidate for electromagnetic wave absorbing and energy storage device applications[J]. Rsc Advances, 2014, 4(33):17039-17053.
    [7] Chen X, Hou C, Zhang Q, et al. One-step synthesis of Co-Ni ferrite/graphene nanocomposites with controllable magnetic and electrical properties[J]. Materials Science Engineering B, 2012, 177(13):1067-1072.
    [8] Hee A C, Mehrali M, Metselaar H S C, et al. Comparison of nanostructured nickel zinc ferrite and magnesium copper zinc ferrite prepared by water-in-oil microemulsion[J]. Electronic Materials Letters, 2012, 8(6):639-642.
    [9] Li Qing. Preparation and microwave absorption properties of grapheme composite materials[D]. Xi'an:North University of China, 2016. (in Chinese)
    [10] Xiong Liang. Preparation and electromagnetic properties of the MnFe2O4/graphene composites[D]. Beijing:Beijing Institute of Technology, 2015. (in Chinese)
    [11] Sun Yinfeng, Li Peifang, Bao Guizhi. Study on the microwave absorption performances and structural analysis of rare earth doped Z type barium ferrite/graphene domposite materials[J]. Carbon Techniques, 2016, 35(5):52-55. (in Chinese)
    [12] Li Shuai, Xun Qining, Zhang Yu, et al. Preparation and microwave absorbing properties of Fe3O4 hollow sphere/RGO composite[J]. Chemical Analysis and Meterage, 2014, 23(5):83-87. (in Chinese)
    [13] Liu Zhaojun. Study of graphene(carbon nanotubes)/LiZn ferrites temperature controlled composite materials[D]. Ji'nan:Shandong University, 2016. (in Chinese)
    [14] Zhang Na, Huang Ying, Zong Meng, et al. Research progress of graphene based on microwave absorbing composite materials[J]. Material Development and Application, 2014, 29(5):89-96. (in Chinese)
    [15] Liu P, Yao Z, Zhou J, et al. Small magnetic co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance[J]. Journal of Materials Chemistry C, 2016, 4(41):9738-9749.
    [16] Durmus Z, Durmus A, Kavas H. Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material[J]. Journal of Materials Science, 2015, 50(3):1201-1213.
    [17] Bao Lixia, Qiao Xiaojing, Li Wangchang, et al. IR interference performance of carbon/ferromagnet composite materials[J]. Infrared and Laser Engineering, 2011, 40(8):1416-1419. (in Chinese)
    [18] Zhang H, Gao S, Shang N, et al. Copper ferrite-graphene hybrid:A highly efficient magnetic catalyst for chemoselective reduction of nitroarenes[J]. Cheminform, 2015, 46(8):31328-31332.
    [19] Dai X Q, Tang Y N, Zhao J H. The effects of defects on Pt absorption on graphene[J]. Journal of Atomic and Molecular Physics, 2010, 27(5):937-941. (in Chinese)
    [20] Xu N, Zhang C, Kong F J, et al. Transport properties of corrugated graphene nanoribbons[J]. Acta Phys Chim Sin, 2011, 27(9):2107-2110. (in Chinese)
    [21] Wu Xiaoyu, Li Songmei, Liu Jianhua, et al. Preparation and microwave absorption properties of CoFe2O4-graphene nanocomposites[J]. Journal of Inorganic Materials, 2014, 29(8):845-850. (in Chinese)
    [22] Ding S J, Ge D B, Huang L H. Impedance matching condition of electromagnetic absorbing material[J]. Chinese Journal of Radio Science, 2009, 24(6):1104-1108.
    [23] Pan Ruzhong, Deng Weilin, Qian Jinfu. Discussion on the approaches for developing high quality infrared radiation materials[J]. Journal of Infrared Millimeter Waves, 1991, 10(2):312-316. (in Chinese)
    [24] Wang Baoming, Su Dazhao, Zhang Guangyin. Properties and mechanisms of infrared radiation of high emittance materials[J]. Journal of Infrared Millimeter Waves, 1983, 2(1):55-62. (in Chinese)
  • [1] 刘苹, 徐威, 熊峰, 江金豹, 黄先燕, 朱志宏.  光生载流子FN隧穿的范德华垂直异质结光电探测特性 . 红外与激光工程, 2023, 52(6): 20230217-1-20230217-10. doi: 10.3788/IRLA20230217
    [2] 王子群, 李振华, 胡晓飞, 许亮, 王娅茹, 王猛, 李院平, 姚海云, 闫昕, 梁兰菊.  石墨烯复合超材料多维超灵敏谷氨酸传感器 . 红外与激光工程, 2023, 52(9): 20230045-1-20230045-8. doi: 10.3788/IRLA20230045
    [3] 李慧莹, 王玄玉, 刘志龙, 孙淑宝, 董文杰.  石墨烯远红外消光性能测试研究 . 红外与激光工程, 2023, 52(2): 20220263-1-20220263-7. doi: 10.3788/IRLA20220263
    [4] 王军, 何美誉, 韩兴伟, 韩超, 韩嘉悦.  局域场增强石墨烯近红外光电探测器(特邀) . 红外与激光工程, 2022, 51(1): 20210823-1-20210823-8. doi: 10.3788/IRLA20210823
    [5] 李泉, 刘姗姗, 路光达, 王爽.  利用石墨烯-金属复合结构实现太赫兹电磁诱导透明超表面主动调控 . 红外与激光工程, 2021, 50(8): 20210246-1-20210246-6. doi: 10.3788/IRLA20210246
    [6] 李凯, 王玄玉, 高艳卿, 董文杰.  石墨烯红外波段复折射率及消光性能研究 . 红外与激光工程, 2021, 50(4): 20200246-1-20200246-7. doi: 10.3788/IRLA20200246
    [7] 杨旗, 申钧, 魏兴战, 史浩飞.  基于石墨烯的红外探测机理与器件结构研究进展 . 红外与激光工程, 2020, 49(1): 0103003-0103003(23). doi: 10.3788/IRLA202049.0103003
    [8] 孟帅, 姚齐峰, 张乾坤, 牛海莎, 祝连庆.  激光偏振拉曼的CVD多晶石墨烯表征 . 红外与激光工程, 2020, 49(2): 0205007-0205007. doi: 10.3788/IRLA202049.0205007
    [9] 赵欣颖, 胡以华, 顾有林, 陈曦, 王新宇, 王鹏.  真核微生物与原核微生物气溶胶0.25~15 μm光学特性 . 红外与激光工程, 2019, 48(10): 1017004-1017004(8). doi: 10.3788/IRLA201948.1017004
    [10] 戴子杰, 杨晶, 龚诚, 张楠, 孙陆, 刘伟伟.  基于石墨烯的光控太赫兹调制器 . 红外与激光工程, 2019, 48(1): 125001-0125001(6). doi: 10.3788/IRLA201948.0125001
    [11] 梁建峰, 刘文元, 涂敏, 崔刚强.  反射光谱法测定交联聚苯乙烯的复折射率 . 红外与激光工程, 2019, 48(2): 204003-0204003(5). doi: 10.3788/IRLA201948.0204003
    [12] 史叶欣, 李九生.  双层石墨烯电控开关设计 . 红外与激光工程, 2018, 47(5): 520003-0520003(6). doi: 10.3788/IRLA201847.0520003
    [13] 张学海, 戴聪明, 武鹏飞, 崔生成, 黄宏华, 刘铮, 毛宏霞, 苗锡奎, 魏合理.  折射率和粒子尺度对大气气溶胶光散射特性的影响 . 红外与激光工程, 2017, 46(12): 1211001-1211001(7). doi: 10.3788/IRLA201746.1211001
    [14] 贺晓娴, 汪相如, 李曼, 胡明刚, 柳建龙, 邱琪.  液晶中波红外光学相控阵关键技术研究进展 . 红外与激光工程, 2016, 45(8): 830003-0830003(6). doi: 10.3788/IRLA201645.0830003
    [15] 徐梦春, 徐青山.  气溶胶粒子特性和垂直分布对辐射的影响 . 红外与激光工程, 2016, 45(2): 211002-0211002(7). doi: 10.3788/IRLA201645.0211002
    [16] 张学海, 魏合理.  基于用几何光学和米散射法的球形粒子前向散射特性计算研究 . 红外与激光工程, 2015, 44(5): 1485-1490.
    [17] 顾有林, 王成, 杨丽, 欧宗伟, 胡以华, 李乐, 赵义正, 陈卫, 王鹏.  黑曲霉孢子灭活前后红外消光特性 . 红外与激光工程, 2015, 44(1): 36-41.
    [18] 彭龙瑶, 钟森城, 朱礼国, 孟坤, 刘乔, 彭其先, 赵剑衡, 张蓉竹, 李泽仁.  基于硅基石墨烯的全光控太赫兹波强度调制系统研究 . 红外与激光工程, 2015, 44(3): 974-978.
    [19] 李世龙, 石峰, 张太民, 刘照路, 张番, 李丹, 任兆玉.  石墨烯光阴极带隙设计 . 红外与激光工程, 2015, 44(11): 3191-3196.
    [20] 李乐, 胡以华, 顾有林, 陈卫.  黑曲霉孢子红外波段消光性能研究 . 红外与激光工程, 2014, 43(7): 2175-2179.
  • 加载中
计量
  • 文章访问数:  576
  • HTML全文浏览量:  90
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 修回日期:  2018-05-20
  • 刊出日期:  2018-09-25

石墨烯/铜镍铁氧体复合材料的制备及性能研究

doi: 10.3788/IRLA201847.0921002
    作者简介:

    马德跃(1990-),男,博士生,主要从事光电功能材料方面的研究。Email:madyuexs@163.com

基金项目:

国家自然科学基金青年科学基金(61405248)

  • 中图分类号: O613.71

摘要: 为制备出宽波段磁波衰减材料,采用水热法制备得到了石墨烯/铜镍铁氧体复合材料(CNFRGO),并对其进行SEM、XRD、红外光谱和拉曼光谱表征分析;然后测量其2~18 GHz的电磁参数,并计算其损耗角正切值和反射损耗,进而分析其微波衰减性能;最后,测量其中远红外波段的复折射率,利用测量数据和T矩阵法计算分析其红外波段消光和吸收性能。结果表明,尖晶石型铜镍铁氧体纳米颗粒吸附在还原石墨烯上,粒径大部分约为20 nm;CNFRGO同时具有介电损耗和磁损耗两种机制,其反射损耗低于-10 dB的频宽为3.7 GHz,在11.8 GHz处有峰值-14.7 dB;CNFRGO在近红外波段消光较强主要由散射引起,中远红外波段则主要由吸收决定,而其吸收能力在近红外和中红外波段较强,但在远红外大气窗口内相对较弱。因此,CNFRGO可同时吸收微波和红外辐射,是一种良好的微波与红外兼容材料。

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回