留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多距离相位恢复的无透镜计算成像技术

刘正君 郭澄 谭久彬

刘正君, 郭澄, 谭久彬. 基于多距离相位恢复的无透镜计算成像技术[J]. 红外与激光工程, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002
引用本文: 刘正君, 郭澄, 谭久彬. 基于多距离相位恢复的无透镜计算成像技术[J]. 红外与激光工程, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002
Liu Zhengjun, Guo Cheng, Tan Jiubin. Lensfree computational imaging based on multi-distance phase retrieval[J]. Infrared and Laser Engineering, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002
Citation: Liu Zhengjun, Guo Cheng, Tan Jiubin. Lensfree computational imaging based on multi-distance phase retrieval[J]. Infrared and Laser Engineering, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002

基于多距离相位恢复的无透镜计算成像技术

doi: 10.3788/IRLA201847.1002002
基金项目: 

国家自然科学基金(61575055,61575053,11874132)

详细信息
    作者简介:

    刘正君(1979-),男,教授,博士生导师,博士,主要从事光学图像处理、衍射成像、特殊光束模式等方面的研究。Email:zjliu@hit.edu.cn

    通讯作者: 郭澄(1992-),男,博士生,主要从事计算衍射成像技术方面的研究。Email:guocheng_27@163.com
  • 中图分类号: TN911.74

Lensfree computational imaging based on multi-distance phase retrieval

  • 摘要: 迭代相位恢复是一种将算法优越性与成像系统相结合的计算成像技术,它将有助于显微镜的小型化与低成本化。基于多距离相位恢复的无透镜成像技术因其高分辨、大视场以及无相差等特性成为计算成像领域的一个研究热点。多距离相位恢复可通过不同衍射距离下的多幅强度图样迭代重建出样品的完整波前信息。目前,无透镜多距离成像系统存在倾斜照明、收敛迟滞、初始距离无法直接测量、真彩色成像疵病、分辨率受限等问题。文中系统地综述了国内外研究团队针对这些问题的解决措施以及最新研究进展,并给出了相对应的实验验证。
  • [1] Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA[J]. Journal of Pathology Informatics, 2017, 8(1):23.
    [2] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7:739-745.
    [3] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4:e261.
    [4] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2):104-111.
    [5] Liu Z, Guo C, Tan J, et al. Securing color image by using phase-only encoding in Fresnel domains[J]. Optics and Lasers in Engineering, 2015, 68:87-92.
    [6] Dean B H, Aronstein D L, Smith J S, et al. Phase retrieval algorithm for JWST flight and testbed telescope[C]//SPIE, 2006, 6265:1-17.
    [7] Bhaduri B, Edwards C, Pham H, et al. Diffraction phase microscopy:principles and applications in materials and life sciences[J]. Advances in Optics and Photonics, 2014, 6:57-119.
    [8] Mic V, Garca J, Zalevsky Z, et al. Phase-shifting Gabor holography[J]. Optics Letters, 2009, 34(10):1492-1494.
    [9] Osten W, Faridian A, Gao P, et al. Recent advances in digital holography[Invited] [J]. Applied Optics, 2014, 53(27):G44-G63.
    [10] Teague M R. Deterministic phase retrieval:a Green's function solution[J]. Journal of the Optical Society of America, 1983, 73(11):1434-1441.
    [11] Zuo Chao, Chen Qian, Sun Jiagao, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation:a review[J]. Chinese Journal of Lasers, 2016, 43(6):0609002. (in Chinese)
    [12] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2):237-246.
    [13] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
    [14] Fienup J R, Crimmins T R, Holsztynski W. Reconstruction of the support of an object from the support of its autocorrelation[J]. Journal of the Optical Society of America, 1982, 72(5):610-624.
    [15] Marchesini S, He H, Chapman H N, et al. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68:140101.
    [16] Elser V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1):40-55.
    [17] Luke D R. Relaxed averaged alternating reflections for diffraction imaging[J]. Inverse Problems, 2005, 21:37-50.
    [18] Rodriguez J A, Xu R, Chen C C, et al. Oversampling smoothness:an effective algorithm for phase retrieval of noisy diffraction intensities[J]. Journal of Applied Crystallography, 2013, 46(2):312-318.
    [19] Miao J, Charalambous C, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 1999, 400(2):342-344.
    [20] Miao J, Ishikawa T, Robinson I K, et al. Beyond crystallography:diffractive imaging using coherent X-ray light sources[J]. Science, 2015, 348(6234):530-535.
    [21] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85:4795-4797.
    [22] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-x-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98:034801.
    [23] Claus D, Maiden A M, Zhang F, et al. Quantitative phase contrast optimized cancerous cell differentiation via ptychography[J]. Optics Express, 2012, 20(9):9911-9918.
    [24] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109:1256-1262.
    [25] Dierolf M, Menzel A, Thibault P, et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 2010, 467:436-440.
    [26] Yao Y, Veeti S P, Liu C, et al. Ptychographic phase microscope based on high-speed modulation on the illumination beam[J]. Journal of Biomedical Optics, 2017, 22(3):036010.
    [27] Greenbaum A, Luo W, Su T W, et al. Imaging without lenses:achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9):889-895.
    [28] Bishara W, Su T, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
    [29] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science Applications, 2016, 5(4):e16060.
    [30] Greenbaum A, Sikoraa U, Ozcan A. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging[J]. Lab on a Chip, 2012, 12:1242-1245.
    [31] Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 10:1126.
    [32] Bishara W, Zhu H, Ozcan A. Holographic opto-fluidic microscopy[J]. Optics Express, 2010, 18(26):27499-27510.
    [33] Latychevskaia T, Fink H W. Solution to the twin image problem in holography[J]. Physical Review Letters, 2007, 98:233901.
    [34] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8):833-835.
    [35] Guo C, Tan J, Liu Z. Precision influence of phase retrieval algorithm in fractional Fourier domains from position measurement error[J]. Applied Optics, 2015, 54(22):6940-6947.
    [36] Shen C, Bao X, Tan J, et al. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint[J]. Optics Express, 2017, 25(14):16235-16249.
    [37] Guo C, Shen C, Tan J, et al. A robust multi-image phase retrieval[J]. Optics and Lasers in Engineering, 2018, 101(1):16-22.
    [38] Noom D W E, Eikema K S E, Witte S. Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction[J]. Optics Letters, 2014, 39(2):193-196.
    [39] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11):14314-14328.
    [40] Feng S, Wang M, Wu J. Lensless in-line holographic microscope with Talbot grating illumination[J]. Optics Letters, 2016, 41(14):3157-3160.
    [41] Singh A K, Pedrini G, Takeda M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7:10687.
    [42] Zhang Z, Zhou Y, Jiang S, et al. Invited article:Mask-modulated lensless imaging with multi-angle illuminations[J]. APL Photonics, 2018, 3:060803.
    [43] Zhou Y, Wu J, Suo J, et al. Single-shot lensless imaging via simultaneous multi-angle LED illumination[J]. Optics Express, 2018, 26(17):21418-21432.
    [44] Shi B, Lian Q, Huang X, et al. Constrained phase retrieval:when alternating projection meets regularization[J]. Journal of the Optical Society of America B, 2018, 35(6):1271-1281.
    [45] Guo C, Wei C, Tan J, et al. A review of iterative phase retrieval for measurement and encryption[J]. Optics and Lasers in Engineering, 2017, 89(1):2-12.
    [46] Katkovnik V, Astola J. High-accuracy wave field reconstruction:decoupled inverse imaging with sparse modeling of phase and amplitude[J]. Journal of the Optical Society of America A, 2012, 29(1):44-54.
    [47] Villanueva-Perez P, Arcadu F, Cloetens P, et al. Contrast-transfer-function phase retrieval based on compressed sensing[J]. Optics Letters, 2017, 42(6):1133-1136.
    [48] Migukin A, Katkovnik V, Astola J. Wave field reconstruction from multiple plane intensity-only data:augmented Lagrangian algorithm[J]. Journal of the Optical Society of America A, 2011, 28(6):993-1002.
    [49] Martin A V, Wang F, Loh N D, et al. Noise-robust coherent diffractive imaging with a single diffraction pattern[J]. Optics Express, 2012, 20(15):16650-16661.
    [50] Zhang F, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11):13592-13606.
    [51] Hessing P, Pfau B, Guehrs E, et al. Holography-guided ptychography with soft X-rays[J]. Optics Express, 2016, 24(2):1840-1851.
    [52] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 2016, 3(1):9-14.
    [53] Faulknera H M L, Allena L J, Oxleya M P, et al. Computational aberration determination and correction[J]. Optics Communications, 2003, 216:89-98.
    [54] Hanser B M, Gustafsson M G L, Agard D A, et al. Phase retrieval for high-numerical-aperture optical systems[J]. Optics Letters, 2003, 28(10):801-803.
    [55] Liu Z, Guo C, Tan J, et al. Iterative phase-amplitude retrieval from multiple images in gyrator domains[J]. Journal of Optics, 2015, 17:025701.
    [56] Anand A, Chhaniwal V K, Almoro P, et al. Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval[J]. Optics Letters, 2009, 34(10):1522-1524.
    [57] Bao P, Zhang F, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 2008, 33(4):309-311.
    [58] Witte S, Tenner V T, Noom D W, et al. Lensless diffractive imaging with ultra-broadband table-top sources:from infrared to extreme-ultraviolet wavelengths[J]. Light:Science Applications, 2014, 3:e163.
    [59] Latychevskaia T, Fink H W. Practical algorithms for simulation and reconstruction of digital in-line Holograms[J]. Applied Optics, 2015, 54:2424-2434.
    [60] Guo C, Li Q, Tan J, et al. A method of solving tilt illumination for multiple distance phase retrieval[J]. Optics and Lasers in Engineering, 2018, 106(1):17-23.
    [61] Guo C, Li Q, Wei C, et al. Axial multi-image phase retrieval under tilt illumination[J]. Scientific Reports, 2017, 7:7562.
    [62] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2):156-158.
    [63] Choi Y S, Lee S J. Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy[J]. Applied Optics, 2009, 48(16), 2983-2990.
    [64] Krotkov E. Focusing[J]. International Journal of Computer Vision, 1987, 1(3):223-237.
    [65] Ren Z, Chen N, Lam E Y. Automatic focusing for multisectional objects in digital holography using the structure tensor[J]. Optics Letters, 2017, 42(9):1720-1723.
    [66] Zhang Y, Wang H, Wu Y, et al. Edge sparsity criterion for robust holographic autofocusing[J]. Optics Letters, 2017, 42(19):3824-3827.
    [67] Gao P, Yao B, Rupp R, et al. Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy[J]. Optics Letters, 2012, 37(7):1172-1174.
    [68] Liao J, Bian L, Bian Z, et al. Single-frame rapid autofocusing for brightfield and fluorescence whole slide imaging[J]. Biomedical Optics Express, 2016, 7(11):4763-4768.
    [69] Ren Z, Xu Z, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 2018,5(4):337-344.
    [70] Jiang S, Liao J, Bian Z, et al. Transform-and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging[J]. Biomedical Optics Express, 2018, 9(4):1601-1612.
    [71] Guo C, Zhao Y, Tan J, et al. Adaptive lens-free computational coherent imaging using autofocusing quantification with speckle illumination[J]. Optics Express, 2018, 26(11):14407-14420.
    [72] Guo C, Li Q, Zhang X, et al. Enhancing imaging contrast via weighted feedback for iterative multi-image phase retrieval[J]. Journal of Biomedical Optics, 2018, 23(1):016015.
    [73] Guo C, Shen C, Tan J, et al. A fast-converging iterative method for multiple distance phase retrieval[J]. Scientific Reports, 2018, 8:6436.
    [74] Greenbaum A, Zhang Y, Feizi A, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J]. Science Translational Medicine, 2014, 6(267):267ra175.
    [75] Park S C, Park M K, Kang M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20:21-36.
    [76] Wang M, Feng S, Wu J. Multilayer pixel super-resolution lensless in-line holographic microscope with random sample movement[J]. Scientific Reports, 2017, 7:12791.
    [77] Zhang J, Sun J, Chen Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7:11777.
    [78] Latychevskaia T, Fink H W. Resolution enhancement in digital holography by self-extrapolation of holograms[J]. Optics Express, 2013, 21(6):7726-7733.
    [79] Greenbaum A, Feizi A, Akbari N, et al. Wide-field computational color imaging using pixel super-resolved on-chip microscopy[J]. Optics Express, 2013, 21(10):12469-12483.
    [80] Repetto L, Piano E, Pontiggia C. Lensless digital holographic microscope with light-emitting diode illumination[J]. Optics Letters, 2004, 29:1132-34.
    [81] Ozcan A, McLeod E. Lensless imaging and sensing[J]. Annual Review of Biomedical Engineering, 2016, 18:77-102.
    [82] Feng S, Wu J. Resolution enhancement method for lensless in-line holographic microscope with spatially extended light source[J]. Optics Express, 2017, 25(20):24735-24744.
    [83] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
    [84] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8):9220-9244.
    [85] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199:65-75.
  • [1] 廖清明, 冯泽心.  面向光束整形的自由曲面衍射光学设计方法(特邀) . 红外与激光工程, 2023, 52(7): 20230430-1-20230430-11. doi: 10.3788/IRLA20230430
    [2] 左超, 陈钱.  计算光学成像:何来,何处,何去,何从? . 红外与激光工程, 2022, 51(2): 20220110-1-20220110-184. doi: 10.3788/IRLA20220110
    [3] 朱硕, 郭恩来, 柏连发, 韩静.  高效学习的透过未知散射介质的相位恢复方法 . 红外与激光工程, 2022, 51(2): 20210889-1-20210889-9. doi: 10.3788/IRLA20210889
    [4] 和河向, 黎永耀, 黄锦圣.  基于相位共轭实现散射成像及光学幻像的双功能散射光调控方法(特邀) . 红外与激光工程, 2022, 51(8): 20220266-1-20220266-12. doi: 10.3788/IRLA20220266
    [5] 王爱业, 潘安, 马彩文, 姚保利.  相位恢复算法:原理、发展与应用(特邀) . 红外与激光工程, 2022, 51(11): 20220402-1-20220402-26. doi: 10.3788/IRLA20220402
    [6] 赵海博, 刘彦丽, 杨雯铄, 苏云, 高大化, 孙权森, 赵慧洁.  双通道衍射计算成像光谱仪系统 . 红外与激光工程, 2022, 51(5): 20220077-1-20220077-8. doi: 10.3788/IRLA20220077
    [7] 黄一彬, 王英, 朱颖峰, 魏超群, 孙鸿生, 董黎.  红外探测器杜瓦封装多余物的衍射分析及控制 . 红外与激光工程, 2021, 50(3): 20200177-1-20200177-6. doi: 10.3788/IRLA20200177
    [8] 冯世杰, 左超, 尹维, 陈钱.  深度学习技术在条纹投影三维成像中的应用 . 红外与激光工程, 2020, 49(3): 0303018-0303018-17. doi: 10.3788/IRLA202049.0303018
    [9] 魏明, 王超, 李英超, 付强, 刘壮, 史浩东, 李冠霖, 姜会林.  望远超分辨成像中的视场光阑影响及补偿机理 . 红外与激光工程, 2020, 49(2): 0214004-0214004. doi: 10.3788/IRLA202049.0214004
    [10] 范斌, 刘彦丽, 赵海博, 徐婧, 孙权森, 王旭.  新型深空高光谱衍射计算成像探测技术(特约) . 红外与激光工程, 2020, 49(5): 20201005-20201005-6. doi:  10.3788.IRLA20201005
    [11] 张佳琳, 陈钱, 张翔宇, 孙佳嵩, 左超.  无透镜片上显微成像技术:理论、发展与应用 . 红外与激光工程, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009
    [12] 程鸿, 熊帮玲, 王金成, 马慧敏, 张芬, 韦穗.  透镜模型下基于色散和强度传输方程的相位恢复技术 . 红外与激光工程, 2019, 48(6): 603018-0603018(6). doi: 10.3788/IRLA201948.0603018
    [13] 赵楠翔, 胡以华.  激光反射层析成像相位恢复算法研究 . 红外与激光工程, 2019, 48(10): 1005005-1005005(7). doi: 10.3788/IRLA201948.1005005
    [14] 潘安, 姚保利.  高通量快速傅里叶叠层显微成像技术研究进展 . 红外与激光工程, 2019, 48(6): 603012-0603012(19). doi: 10.3788/IRLA201948.0603012
    [15] 刘正君, 耿勇, 谭久彬.  基于柱透镜多旋转测量的计算成像 . 红外与激光工程, 2019, 48(6): 603016-0603016(5). doi: 10.3788/IRLA201948.0603016
    [16] 程鸿, 吕倩倩, 韦穗, 邓会龙, 高要利.  基于光强传输方程与SLM的快速相位恢复 . 红外与激光工程, 2018, 47(7): 722003-0722003(5). doi: 10.3788/IRLA201847.0722003
    [17] 程鸿, 邓会龙, 沈川, 王金成, 韦穗.  光强传输方程与图像插值融合的相位恢复 . 红外与激光工程, 2018, 47(10): 1026003-1026003(7). doi: 10.3788/IRLA201847.1026003
    [18] 马鑫雪, 王建立, 王斌.  利用相位恢复波前传感技术检测球面镜面形 . 红外与激光工程, 2014, 43(10): 3428-3433.
    [19] 曾文雯, 钟小品, 李景镇.  从单幅干涉图中恢复相位的区间反转方法 . 红外与激光工程, 2014, 43(9): 3151-3156.
    [20] 俞建杰, 马晶, 谭立英, 韩琦琦.  基于相位混合算法的衍射光学元件优化设计方法 . 红外与激光工程, 2013, 42(9): 2472-2477.
  • 加载中
计量
  • 文章访问数:  782
  • HTML全文浏览量:  137
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-05
  • 修回日期:  2018-09-03
  • 刊出日期:  2018-10-25

基于多距离相位恢复的无透镜计算成像技术

doi: 10.3788/IRLA201847.1002002
    作者简介:

    刘正君(1979-),男,教授,博士生导师,博士,主要从事光学图像处理、衍射成像、特殊光束模式等方面的研究。Email:zjliu@hit.edu.cn

    通讯作者: 郭澄(1992-),男,博士生,主要从事计算衍射成像技术方面的研究。Email:guocheng_27@163.com
基金项目:

国家自然科学基金(61575055,61575053,11874132)

  • 中图分类号: TN911.74

摘要: 迭代相位恢复是一种将算法优越性与成像系统相结合的计算成像技术,它将有助于显微镜的小型化与低成本化。基于多距离相位恢复的无透镜成像技术因其高分辨、大视场以及无相差等特性成为计算成像领域的一个研究热点。多距离相位恢复可通过不同衍射距离下的多幅强度图样迭代重建出样品的完整波前信息。目前,无透镜多距离成像系统存在倾斜照明、收敛迟滞、初始距离无法直接测量、真彩色成像疵病、分辨率受限等问题。文中系统地综述了国内外研究团队针对这些问题的解决措施以及最新研究进展,并给出了相对应的实验验证。

English Abstract

参考文献 (85)

目录

    /

    返回文章
    返回