留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaSb基光泵浦半导体碟片激光器的研究进展(特邀)

尚金铭 张宇 杨成奥 谢圣文 黄书山 袁野 张一 邵福会 徐应强 牛智川

尚金铭, 张宇, 杨成奥, 谢圣文, 黄书山, 袁野, 张一, 邵福会, 徐应强, 牛智川. GaSb基光泵浦半导体碟片激光器的研究进展(特邀)[J]. 红外与激光工程, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004
引用本文: 尚金铭, 张宇, 杨成奥, 谢圣文, 黄书山, 袁野, 张一, 邵福会, 徐应强, 牛智川. GaSb基光泵浦半导体碟片激光器的研究进展(特邀)[J]. 红外与激光工程, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004
Shang Jinming, Zhang Yu, Yang Cheng'ao, Xie Shengwen, Huang Shushan, Yuan Ye, Zhang Yi, Shao Fuhui, Xu Yingqiang, Niu Zhichuan. Research progress of GaSb based optically pumped semiconductor disk lasers (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004
Citation: Shang Jinming, Zhang Yu, Yang Cheng'ao, Xie Shengwen, Huang Shushan, Yuan Ye, Zhang Yi, Shao Fuhui, Xu Yingqiang, Niu Zhichuan. Research progress of GaSb based optically pumped semiconductor disk lasers (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004

GaSb基光泵浦半导体碟片激光器的研究进展(特邀)

doi: 10.3788/IRLA201847.1003004
基金项目: 

国家自然科学基金(61790580);国家973计划(2014CB643903)

详细信息
    作者简介:

    尚金铭(1993-),男,博士生,主要从事锑化物半导体激光器方面的研究。Email:shangjinming@semi.ac.cn

  • 中图分类号: TN24

Research progress of GaSb based optically pumped semiconductor disk lasers (invited)

  • 摘要: GaSb基光泵浦半导体碟片激光器(OP-SDLs)可以获得高光束质量和高功率的红外激光输出,是近年来新型中红外激光器件研究领域的热点。文中介绍了GaSb基光泵浦半导体碟片激光器增益芯片的外延结构和工作原理,综述了2 m波段GaSb基泵浦半导体碟片激光器的研究进展,讨论了该类激光器的波长扩展、功率提升、实现窄线宽短脉冲发射和有效热管理关键问题,评述了性能发展的主要技术方向和应用前景。
  • [1] Zhang Dongyan, Wang Rongrui. Progress on mid-infrared lasers[J]. Laser and Infrared, 2011, 41(5):487-491. (in Chinese)
    [2] Nikitichev A A, Stepanov A I. 2-mm lasers for optical monitoring[J]. Journal of Optical Technology c/c of Opticheskii Zhurnal, 1999, 66(66):718-723.
    [3] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A Molecular Biomolecular Spectroscopy, 1998, 54(2):197-236.
    [4] Mikhailova M P, Titkov A N. Type Ⅱ heterojunctions in the GaInAsSb/GaSb system[J]. Semiconductor Science Technology, 1994, 9(7):1279-1284.
    [5] Baranov A N, Cuminal Y, Boissier G, et al. Electroluminescence of GaInSb/GaSb strained single quantum well structures grown by molecular beam epitaxy[J]. Semiconductor Science Technology, 1996, 11(8):1185-1190.
    [6] Tilma B W, Mangold M, Zaugg C A, et al. Recent advances in ultrafast semiconductor disk lasers[J]. Light Science Applications, 2015, 4(7):e310.
    [7] Ville-Markus Korpijrvi, Kantola E L, Leinonen T, et al. Monolithic GaInNAsSb/GaAs VECSEL operating at 1550 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6):480-484.
    [8] Kantola E, Leinonen T, Ranta S, et al. 1180 nm VECSEL with 50 W output power[C]//SPIE, 2015, 9349:93490U.
    [9] Kantola E, Leinonen T, Penttinen J P, et al. 615 nm GaInNAs VECSEL with output power above 10 W[J]. Optics Express, 2015, 23(16):20280.
    [10] Myara M, Garnache A. Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR[C]//SPIE, 2017, 10087:1008704.
    [11] Burns D, Hopkins J M, Kemp A J, et al. Recent developments in high-power short-wave mid-infrared semiconductor disk lasers[C]//SPIE, 2009:7193.
    [12] Rsener B, Rattunde M, Kaspar S, et al. GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8m wavelength range[C]//SPIE, 2010, 7578:75780X.
    [13] Kaspar S, Rattunde M, Tpper T, et al. Recent advances in 2-m GaSb-based semiconductor disk laser-power scaling, narrow-linewidth and short-pulse operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1501908.
    [14] Schulz N, Rattunde M, Manz C, et al. Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3m[J]. IEEE Photonics Technology Letters, 2006, 18(9):1070-1072.
    [15] Corzine S W, Geels R S, Scott J W, et al. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure[J]. IEEE Journal of Quantum Electronics, 1989, 25(6):1513-1524.
    [16] Cerutti L, Garnache A, Genty F, et al. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1m[J]. Electronics Letters, 2003, 39(3):290-292.
    [17] Hopkins J M, Hempler N, Rsener B, et al. High-power,(AlGaIn)(AsSb) semiconductor disk laser at 2.0m[J]. Optics Letters, 2008, 33(2):201-203.
    [18] Paajaste J, Suomalainen S, Koskinen R, et al. High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2m[J]. Journal of Crystal Growth, 2009, 311(7):1917-1919.
    [19] Holl P, Rattunde M, Adler S, et al. GaSb-based 2.0m SDL with 17 W output power at 20℃[J]. Electronics Letters, 2016, 52(21):1794-1795.
    [20] Cerutti L, Garnache A, Ouvrard A, et al. High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3m[J]. Journal of Crystal Growth, 2004, 268(1-2):128-134.
    [21] Cerutti L, Garnache A, Ouvrard A, et al. 2.36m diode pumped VCSEL operating at room temperature in continuous wave with circular TEM 00, output beam[J]. Electronics Letters, 2004, 40(14):869-871.
    [22] Rattunde M, Schulz N, Rsener B, et al. High brightness GaSb-based optically pumped semiconductor disk lasers at 2.3m[C]//SPIE, 2007, 6479:647915.
    [23] Rsener B, Rattunde M, Moser R, et al. GaSb-based optically pumped semiconductor disk laser using multiple gain elements[J]. IEEE Photonics Technology Letters, 2009, 21(13):848-850.
    [24] Paajaste J, Koskinen R, Nikkinen J, et al. Power scalable 2.5m (AlGaIn)(AsSb) semiconductor disk laser grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2011, 323(1):454-456.
    [25] Holl P, Rattunde M, Wagner J. Optimization of 2.5m VECSEL:influence of the QW active region[C]//SPIE, 2016, 97340:97340S.
    [26] Rsener B, Rattunde M, Moser R, et al. Continuous-wave room-temperature operation of a 2.8m GaSb-based semiconductor disk laser[J]. Optics Letters, 2011, 36(3):319-321.
    [27] Holl P, Rattunde M, Adler S, et al. GaSb-based VECSEL for high-power applications and Ho-pumping[C]//SPIE, 2017, 10087:1008705.
    [28] Holms M A, Burns D, Ferguson A I, et al. Actively stabilized single-frequency vertical-external-cavity AlGaAs laser[J]. Photonics Technology Letters IEEE, 1999, 11(12):1551-1553.
    [29] Cerutti L, Garnache A, Ouvrard A, et al. Vertical cavity surface emitting laser sources for gas detection[J]. Physica Status Solidi, 2005, 202(4):631-635.
    [30] Hopkins J M, Maclean A J, Burns D, et al. Tunable, single-frequency, diode-pumped 2.3m VECSEL[C]//Lasers and Electro-Optics, and Quantum Electronics, 2008, 15(13):1-2.
    [31] Kaspar S, Rosener B, Rattunde M, et al. Sub-MHz-linewidth 200 mW actively stabilized 2.3m semiconductor disk laser[J]. IEEE Photonics Technology Letters, 2011, 23(20):1538-1540.
    [32] Rsener B, Kaspar S, Rattunde M, et al. 2m semiconductor disk laser with a heterodyne linewidth below 10 kHz[J]. Optics Letters, 2011, 36(18):3587-3589.
    [33] Kaspar S, Rattunde M, Tpper T, et al. Semiconductor disk laser at 2.05m wavelength with 100 kHz linewidth at 1 W output power[J]. Applied Physics Letters, 2012, 100(3):407-415.
    [34] Kaspar S, Rattunde M, Topper T, et al. Linewidth narrowing and power scaling of single-frequency 2.X m GaSb-based semiconductor disk lasers[J]. IEEE Journal of Quantum Electronics, 2013, 49(3):314-324.
    [35] Price J H V, Monro T M, Ebendorff-Heidepriem H, et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3):738-749.
    [36] Yarborough J M, Lai Y Y, Kaneda Y, et al. Record pulsed power demonstration of a 2m GaSb-based optically pumped semiconductor laser grown lattice-mismatched on an AlAs/GaAs Bragg mirror and substrate[J]. Applied Physics Letters, 2009, 95(8):645109.
    [37] Lai Y Y, Yarborough J M, Kaneda Y, et al. 340 W peak power from a GaSb 2m optically pumped semiconductor laser(OPSL) grown mismatched on GaAs[J]. IEEE Photonics Technology Letters, 2010, 22(16):1253-1255.
    [38] Hrknen A, Paajaste J, Suomalainen S, et al. Picosecond passively mode-locked GaSb-based semiconductor disk laser operating at 2m[J]. Optics Letters, 2010, 35(24):4090-4092.
    [39] Harkonen A, Grebing C, Paajaste J, et al. Mode-locked GaSb disk laser producing 384 fs pulses at 2m wavelength[J]. Electronics Letters, 2011, 47(7):454-456.
    [40] Kaspar S, Rattunde M, Topper T, et al. Electro-optically cavity dumped 2m semiconductor disk laser emitting 3 ns pulses of 30 W peak power[J]. Applied Physics Letters, 2012, 101(14):1063-1087.
    [41] Schulz N, Rattunde M, Wagner J, et al. GaSb-based VECSELs emitting at around 2.35m employing different optical pumping concepts[C]//Photonics Europe, 2006:6184.
    [42] Schulz N, Rattunde M, Ritzenthaler C, et al. Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35m[J]. Applied Physics Letters, 2007, 91(9):1063-1069.
    [43] Holl P, Rattunde M, Adler S, et al. Recent advances in power scaling of GaSb-based semiconductor disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6):324-335.
    [44] Perez J P, Laurain A, Cerutti L, et al. Technologies for thermal management of mid-IR Sb-based surface emitting lasers[J]. Semiconductor Science Technology, 2017, 25(4):045021.
    [45] Devautour M, Michon A, Beaudoin G, et al. Thermal management for high-power single-frequency tunable diode-pumped VECSEL emitting in the near-and mid-IR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1701108.
    [46] Liau Z L. Semiconductor wafer bonding via liquid capillarity[J]. Applied Physics Letters, 2000, 77(5):651-653.
    [47] Kaspar S, Rattunde M, Schilling C, et al. Micro-cavity 2m GaSb-based semiconductor disk laser using high-reflectivity SiC heatspreader[J]. Applied Physics Letters, 2013, 103(4):041117.
  • [1] 颜秉政, 穆西魁, 安嘉硕, 齐瑶瑶, 丁洁, 白振旭, 王雨雷, 吕志伟.  2 μm单纵模全固态脉冲激光技术研究进展(封面文章·特邀) . 红外与激光工程, 2024, 53(2): 20230730-1-20230730-16. doi: 10.3788/IRLA20230730
    [2] 姜鑫鹏, 杜特, 马汉斯, 张兆健, 何新, 张振福, 陈欢, 于洋, 黄沙, 杨俊波.  光学微纳结构红外隐身技术研究进展(特邀) . 红外与激光工程, 2023, 52(6): 20230197-1-20230197-14. doi: 10.3788/IRLA20230197
    [3] 凡正东, 彭航宇, 张俊, 王靖博, 张继业, 王立军.  基于外腔光谱合束的650 nm半导体激光器 . 红外与激光工程, 2023, 52(11): 20230198-1-20230198-6. doi: 10.3788/IRLA20230198
    [4] 艾孜合尔江·阿布力克木, 达娜·加山尔, 周玉霞, 塔西买提·玉苏甫.  高光束质量闲频光谐振中红外MgO:PPLN光参量振荡器 . 红外与激光工程, 2023, 52(4): 20220595-1-20220595-6. doi: 10.3788/IRLA20220595
    [5] 李森森, 张 宇, 徐应强, 牛智川, 闫秀生.  2 μm锑化物半导体激光器光纤输出模块 . 红外与激光工程, 2022, 51(8): 20220493-1-20220493-2. doi: 10.3788/IRLA20220493
    [6] 吴函烁, 宋家鑫, 马鹏飞, 任帅, 王广建, 肖虎, 黄良金, 冷进勇, 潘志勇, 周朴.  高光束质量6 kW级窄线宽光纤激光 . 红外与激光工程, 2022, 51(3): 20210859-1-20210859-2. doi: 10.3788/IRLA20210859
    [7] 杨婷婷, 陈红山, 刘贺言, 郝婧婕, 张金伟.  基于孤子自压缩的高功率少周期2 μm激光产生(特邀) . 红外与激光工程, 2021, 50(8): 20210355-1-20210355-7. doi: 10.3788/IRLA20210355
    [8] 陈薏竹, 姚天甫, 肖虎, 冷进勇, 周朴.  基于无源光纤的2 kW高光束质量拉曼放大器 . 红外与激光工程, 2020, 49(6): 1-2.
    [9] 季艳慧, 何洋, 万浩华, 孙俊杰, 陈飞.  高功率循环流动型半导体泵浦碱金属蒸汽激光器研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201080-1-20201080-11. doi: 10.3788/IRLA20201080
    [10] 杨成奥, 张一, 尚金铭, 陈益航, 王天放, 佟海保, 任正伟, 张宇, 徐应强, 牛智川.  2~4 μm中红外锑化物半导体激光器研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201075-1-20201075-9. doi: 10.3788/IRLA20201075
    [11] 申春梅, 于峰, 刘文凯.  某空间气体监测仪热设计及试验验证 . 红外与激光工程, 2020, 49(4): 0413007-0413007-10. doi: 10.3788/IRLA202049.0413007
    [12] 何建国, 李明, 貊泽强, 王金舵, 余锦, 代守军, 陈艳中, 葛文琦, 刘洋, 凡炼文.  高功率板条激光介质的纵向强制对流换热技术 . 红外与激光工程, 2020, 49(9): 20200556-1-20200556-8. doi: 10.3788/IRLA20200556
    [13] 王菲.  高稳定度光泵浦腔内倍频488 nm半导体薄片激光器 . 红外与激光工程, 2019, 48(6): 606004-0606004(5). doi: 10.3788/IRLA201948.0606004
    [14] 靳全伟, 庞毓, 蒋建锋, 谭亮, 崔玲玲, 魏彬, 万敏, 高清松, 唐淳.  VRM腔高光束质量高功率双波长激光器 . 红外与激光工程, 2018, 47(11): 1105003-1105003(5). doi: 10.3788/IRLA201847.1105003
    [15] 谢圣文, 杨成奥, 黄书山, 袁野, 邵福会, 张一, 尚金铭, 张宇, 徐应强, 倪海桥, 牛智川.  2 μm GaSb基大功率半导体激光器研究进展 . 红外与激光工程, 2018, 47(5): 503003-0503003(9). doi: 10.3788/IRLA201847.0503003
    [16] 林宏奂, 郭超, 赵鹏飞, 李成钰, 李琦, 王波鹏, 黄志华, 楚秋慧, 唐选.  10 kW级单纤泵浦耦合器件设计与实验研究 . 红外与激光工程, 2016, 45(S2): 11-14. doi: 10.3788/IRLA201645.S206003
    [17] 庄令平, 张雄军, 张君, 郑建刚, 龙蛟, 田晓琳, 郑奎兴, 朱启华.  薄膜电极重频电光开关的热管理 . 红外与激光工程, 2016, 45(9): 921001-0921001(7). doi: 10.3788/IRLA201645.0921001
    [18] 安宁, 刘国军, 李占国, 李辉, 席文星, 魏志鹏, 马晓辉.  2 μm半导体激光器有源区量子阱数的优化设计 . 红外与激光工程, 2015, 44(7): 1969-1974.
    [19] 毛小洁, 秘国江, 庞庆生, 邹跃.  高光束质量弹载激光主动成像激光器研制 . 红外与激光工程, 2015, 44(8): 2239-2242.
    [20] 金光勇, 宋雪迪, 吴春婷, 陈薪羽, 于凯.  室温6.11 mJ脉冲LD单端抽运Tm:YAG调Q激光器 . 红外与激光工程, 2014, 43(10): 3252-3256.
  • 加载中
计量
  • 文章访问数:  467
  • HTML全文浏览量:  52
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 修回日期:  2018-06-12
  • 刊出日期:  2018-10-25

GaSb基光泵浦半导体碟片激光器的研究进展(特邀)

doi: 10.3788/IRLA201847.1003004
    作者简介:

    尚金铭(1993-),男,博士生,主要从事锑化物半导体激光器方面的研究。Email:shangjinming@semi.ac.cn

基金项目:

国家自然科学基金(61790580);国家973计划(2014CB643903)

  • 中图分类号: TN24

摘要: GaSb基光泵浦半导体碟片激光器(OP-SDLs)可以获得高光束质量和高功率的红外激光输出,是近年来新型中红外激光器件研究领域的热点。文中介绍了GaSb基光泵浦半导体碟片激光器增益芯片的外延结构和工作原理,综述了2 m波段GaSb基泵浦半导体碟片激光器的研究进展,讨论了该类激光器的波长扩展、功率提升、实现窄线宽短脉冲发射和有效热管理关键问题,评述了性能发展的主要技术方向和应用前景。

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回