留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光频率梳测距综述

赵力杰 周艳宗 夏海云 武腾飞 韩继博

赵力杰, 周艳宗, 夏海云, 武腾飞, 韩继博. 飞秒激光频率梳测距综述[J]. 红外与激光工程, 2018, 47(10): 1006008-1006008(16). doi: 10.3788/IRLA201847.1006008
引用本文: 赵力杰, 周艳宗, 夏海云, 武腾飞, 韩继博. 飞秒激光频率梳测距综述[J]. 红外与激光工程, 2018, 47(10): 1006008-1006008(16). doi: 10.3788/IRLA201847.1006008
Zhao Lijie, Zhou Yanzong, Xia Haiyun, Wu Tengfei, Han Jibo. Overview of distance measurement with femtosecond optical frequency comb[J]. Infrared and Laser Engineering, 2018, 47(10): 1006008-1006008(16). doi: 10.3788/IRLA201847.1006008
Citation: Zhao Lijie, Zhou Yanzong, Xia Haiyun, Wu Tengfei, Han Jibo. Overview of distance measurement with femtosecond optical frequency comb[J]. Infrared and Laser Engineering, 2018, 47(10): 1006008-1006008(16). doi: 10.3788/IRLA201847.1006008

飞秒激光频率梳测距综述

doi: 10.3788/IRLA201847.1006008
详细信息
    作者简介:

    赵力杰(1994-),男,硕士生,主要从事激光雷达遥感方面的研究。Email:zhaolj@mail.ustc.edu.cn

  • 中图分类号: TN249;TN958.98

Overview of distance measurement with femtosecond optical frequency comb

  • 摘要: 精准的距离测量对于卫星编队飞行、行星空间定位、大型结构形状测量、微小位移测量以及工业制造测量等方面具有重要意义。近年来,基于飞秒激光频率梳的测距技术以其测量速度快、准确度高等优点成为国际研究热点。在简要阐述飞秒激光频率梳原理特性基础上,分析了目前国内外主要的飞秒激光频率梳测距的原理及测距结果,包括飞行时间法、多波长干涉法、双频率梳法、空间色散干涉法、实时色散傅里叶变换法以及多技术综合测距法。简要介绍了在测量过程中对空气折射率修正和色散补偿方法,对各类测距方法进行了对比总结,着重介绍了基于飞秒激光频率梳的测距最新研究进展。
  • [1] Hu M, Wang C Y, Li Y, et al. Multiplex frequency conversion of unamplified 30-fs Ti:sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber[J]. Optics Express, 2004, 12(25):1932-1937.
    [2] Fork R L, Greene B I, Shank C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Applied Physics Letter, 1981, 38(9):671-672.
    [3] Yeh K-L, Hoffmann M C, Hebling J, et al. Generation of ultrashort terahertz pulses by optical rectification[J]. Applied Physics Letters, 2007, 90:171121.
    [4] Theuer M, Molter D, Maki K, et al. Terahertz generation in an actively controlled femtosecond enhancement cavity[J]. Applied Physics Letters, 2008, 93:041119.
    [5] Liu F, Song Y, Xing Q, et al. Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier[J]. IEEE Photonics Technology Letters, 2010, 22(11):814-816.
    [6] Zhang Y, Chen Q, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5:435-448.
    [7] Dong Zhiwei, Zhang Weibin, Zheng Liwei, et al. Processing of diamond applying femtosecond and nanosecond laser pulses[J]. Infrared and Laser Engineering, 2015, 44(3):893-896. (in Chinese)
    [8] Zhang Junzhan, Wang Yuqian, Zhang Ying, et al. Effect of feeding speed on micro-hole drilling in TiC ceramic by femtosecond laser[J]. Optics and Precision Engineering, 2015, 23(6):1565-1571. (in Chinese)
    [9] Liang Jufa, Jing Shimei, Meng Aihua, et al. Integrated optical sensor based on a FBG in parallel with a LPG[J]. Chinese Optics, 2016, 9(3):329-334. (in Chinese)
    [10] Tirlapur Uday K, Knig K. Cell biology:Targeted transfection by femtosecond laser[J]. Nature, 2002, 418(6895):290-291.
    [11] Stevenson D, Agate B, Tsampoula X, et al. Femtosecond optical transfection of cells:Viability and efficiency[J]. Optics Express, 2006, 14(16):7125-7133.
    [12] Trtica M S, Gakovic B M, Radak B B, et al. Material surface modification by ns, ps and fs laser pulses[J]. Optics and Precision Engineering, 2011, 19(2):221-227.
    [13] Liu Dongxu, Xia Hong, Sun Yunlu, et al. Femtosecond laser direct writing bio-gel template for in situ synthesis of nanoparticles[J]. Chinese Optics, 2014, 7(4):608-615. (in Chinese)
    [14] Yang Chengjuan, Tian Yanling, Cui Liangyu, et al. Ultrafast laser-induced changes in titanium[J]. Infrared and Laser Engineering, 2015, 44(7):2002-2007. (in Chinese)
    [15] Yuan Wei, Xing Xin, Han Dongjia, et al. Ultrafast laser pre-damage dynamics process in Al2O3/SiO2 high reflectors[J]. Infrared and Laser Engineering, 2016, 45(12):1206013. (in Chinese)
    [16] Song Yinglin, Li Zhongguo. Ultrafast nonlinear refractive effect and mechanism of solvent nitrobenzene[J]. Infrared and Laser Engineering, 2017, 46(5):0502001. (in Chinese)
    [17] Wang Qingyue. Femtosecond Laser Applications in Advanced Technologies[M]. Beijing:National Defense Industry Press, 2015. (in Chinese)
    [18] Kubota T, Nara M, Yoshino T. Interferometer for measuring displacement and distance[J]. Optics Letters, 1987, 12(5):310-312.
    [19] Dickey J O, Bender P L, Faller J E, et al. Lunar laser ranging:a continuing legacy of the Apollo program[J]. Science, 1994, 265:482-490.
    [20] Pritchard M E, Simons M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes[J]. Nature, 2002, 418(6894):167-171.
    [21] Yeomans D K, Antreasian P G, Barriot J P, et al. Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros[J]. Science, 2000, 289(5487):2085-2088.
    [22] Wu X, Wei H, Zhang H, et al. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb[J]. Applied Optics, 2013, 52(10):2042-2048.
    [23] Wu H, Zhang F, Meng F, et al. Absolute distance measurement using frequency comb and a single-frequency laser[J]. IEEE Photon Technology Letter, 2015, 27:2587-2590.
    [24] Baumann E, Giorgetta F R, Coddington I, et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Optics Letters, 2013, 38(12):2026-2028.
    [25] Wu Tengfei, Liang Zhiguo, Yan Jiahua, et al. The progress on distance measuring technique with a femtosecond optical frequency comb[J]. Metrology Measurement Technology, 2011, 31(5):41-44. (in Chinese)
    [26] Hua Qing, Zhou Weihu, Xu Yan. Review of absolute distance measurement with femtosecond optical frequency comb[J]. Metrology Measurement Technology, 2012, 32(1):1-14. (in Chinese)
    [27] Wang Guochao, Yan Shuhua, Lin Cunbao, et al. Overview of large scale precision ranging by femtosecond optical frequency comb[J]. Optical Technique, 2012, 38(6):670-677. (in Chinese)
    [28] Wu Xuejian, Li Yan, Wei Haoyun, et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser Optoelectronics Progress, 2012, 49:030001. (in Chinese)
    [29] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 2009, 458(7242):1145-1149.
    [30] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2):102-112.
    [31] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466):635-639.
    [32] Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877):233-237.
    [33] Hnsch T W. Nobel lecture:Passion for precision[J]. Reviews of Modern Physics, 2006, 78(4):1297-1309.
    [34] Hall J L. Nobel Lecture:Defining and measuring optical frequencies[J]. Reviews of Modern Physics, 2006, 78(4):1279-1295.
    [35] Diddams S A. The evolving optical frequency comb[Invited] [J]. JOSA B, 2010, 27(11):B51-B62.
    [36] Newbury N R. Searching for applications with a fine-tooth comb[J]. Nature Photonics, 2011, 5(4):186-188.
    [37] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 2012, 745:1-8.
    [38] Fermann M, Hartl I. Ultrafast fiber laser technology[Invited] [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1):191-206.
    [39] Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs:principles, status and applications[J]. Advances in Optics and Photonics, Review, 2016, 8(3):465-540.
    [40] Han Hainian, Zhang Wei, Wang Peng, et al. Precise control of femtosecond Ti:sapphire laser frequency comb[J]. Acta Physica Sinica, 2007, 56(5):2760-2764. (in Chinese)
    [41] Yan M, Li W, Yang K, et al. Harmonic mode locking with reduced carrier-envelope phase noise in ytterbium-doped fiber laser[J]. Optics Letters, 2012, 37(15):3021-3023.
    [42] Guo Z, Hao Q, Yang S, et al. Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system[J]. IEEE Photonics Journal, 2017, 9(1):1600507.
    [43] Hao Q, Zhang Q, Chen F, et al. All-optical 20-Hz-level repetition rate stabilization of mode locking with a nonlinear amplifying loop mirror[J]. Journal of Lightwave Technology, 2016, 34(11):2833-2837.
    [44] Luo Jiang, Yang Song, Hao Qiang, et al. Precise locking the repetition rate of a SESAM mode-locking all polarization maintaining fiber laser[J]. Acta Optica Sinica, 2017, 37(2):0206003. (in Chinese)
    [45] Hao Q, Zhang Q, Sun T, et al. Divided-pulse nonlinear amplification and simultaneous compression[J]. Applied Physics Letters, 2015, 106:101103.
    [46] Lee J, Lee K, Jang Y, et al. Testing of a femtosecond pulse laser in outer space[J]. Scientific Reports, 2014:05134.
    [47] Lee J, Kim Y J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 2010, 4(10):716-720.
    [48] Lee J, Kim Y J, Kim S W. Time-of-flight measurement using femtosecond pulses[C]//CLEO:Applications and Technology, 2011:JThB120.
    [49] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 2000, 39(30):5512-5517.
    [50] Jin J, Kim Y J, Kim Y, et al. Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser[J]. Optics Express, 2006, 14(13):5968-5974.
    [51] Jin J, Kim Y J, Kim Y, et al. Absolute distance measurements using the optical comb of a femtosecond pulse laser[J]. Int J Precis Eng Manuf, 2007, 8(4):22-26.
    [52] Bitou Y. Displacement metrology directly linked to a time standard using an optical-frequency-comb generator[J]. Optics Letters, 2009, 34(10):1540-1542.
    [53] Hyun S, Kim Y J, Kim Y, et al. Absolute distance measurement using the frequency comb of a femtosecond laser[J]. CIRP Annals-Manufacturing Technology, 2010, 59(1):555-558.
    [54] Schuhler N, Salvad Y, Lvque S, et al. Frequency-comb-referenced two-wavelength source for absolute distance measurement[J]. Optics Letters, 2006, 31(21):3101-3103.
    [55] Salvad Y, Schuhler N, Lvque S, et al. High-accuracy absolute distance measurement using frequency comb referenced multi-wavelength source[J]. Applied Optics, 2008, 47(14):2715-2720.
    [56] Doloca N R, Meiners-Hagen K, Wedde M, et al. Absolute distance measurement system using a femtosecond laser as a modulator[J]. Measurement Science and Technology, 2010, 21(11):115302.
    [57] Wang Guochao, Wei Chunhua, Yan Shuhua. Wavelength selection and non-ambiguity range analysis for optical-comb-referenced multi-wavelength absolute distance measurement[J]. Acta Optica Sinica, 2014, 34(4):121-127. (in Chinese)
    [58] Wang G, Jang Y S, Hyun S, et al. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser[J]. Optics Express, 2015, 23(7):9121-9129.
    [59] Oh H, Park H E, Lee K, et al. Improved GPS-based satellite relative navigation using femtosecond laser relative distance measurements[J]. Journal of Astronomy and Space Sciences, 2016, 33(1):45-54.
    [60] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6):351-356.
    [61] Bernhardt B, Ozawa A, Jacquet P, et al. Cavity-enhanced dual-comb spectroscopy[J]. Nature Photonics, 2010, 4(1):55-57.
    [62] Coddington I, Swann W C, Newbury N R. Coherent dual-comb spectroscopy at high signal-to-noise ratio[J]. Physical Review A, 2010, 82(4):04381.
    [63] Newbury N R, Coddington I, Swann W. Sensitivity of coherent dual-comb spectroscopy[J]. Optics Express, 2010, 18(8):7929-7945.
    [64] Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Optics Express, 2011, 19(19):18501-18509.
    [65] Lee J, Han S, Lee K, et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength[J]. Measurement Science and Technology, 2013, 24(4):045201.
    [66] Zhang H, Wei H, Wu X, et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling[J]. Optics Express, 2014, 22(6):6597-6604.
    [67] Zhang H, Wei H, Wu X, et al. Reliable non-ambiguity range extension with dual-comb simultaneous operation in absolute distance measurements[J]. Measurement Science and Technology, 2014, 25(12):125201.
    [68] Zhang H, Wu X, Wei H, et al. Time-of-flight absolute distance measurement by dual-comb second harmonic generation[C]//Frontiers in Optics, 2014:FTh3G.4.
    [69] Zhang H, Wu X, Wei H, et al. Compact dual-comb absolute distance ranging with an electric reference[J]. IEEE Photonics Journal, 2015, 7(3):1-8.
    [70] Han S, Kim Y J, Kim S W. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses[J]. Optics Express, 2015, 23(20):25874-25882.
    [71] Liang Fei, Song Youjian, Shi Haosen, et al. Measurement precision analysis for the rapid ranging system based on dual femtosecond lasers[J]. Journal of OptoelectronicsLaser, 2015, 26(8):1553-1560. (in Chinese)
    [72] Shi H, Song Y, Liang F, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers[J]. Optics Express, 2015, 23(11):14057-14069.
    [73] Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 2006, 14(13):5954-5960.
    [74] Weng Jidong. Ultrafast pulse laser interference technique and its application in the diagnosis of shock dynamic process[D]. Mianyang:China Academy of Engineering Physics, 2010. (in Chinese)
    [75] Cui M, Zeitouny M G, Bhattacharya N, et al. Long distance measurement with femtosecond pulses using a dispersive interferometer[J]. Optics Express, 2011, 19(7):6549-6562.
    [76] Xu Y, Zhou W H, Liu D M, et al. Absolute distance measurement based on the optical frequency comb of a femtosecond laser[J]. Opto-Electron Eng, 2011, 38(8):79-83.
    [77] Xu Y, Zhou W, Liu D, et al. Absolute distance measurement by spectrally resolved interferometry based on a femtosecond pulse laser[J]. Optical Engineering, 2012, 51(8):081509.
    [78] Zeitouny M G, Cui M, Janssen A, et al. Time-frequency distribution of interferograms from a frequency comb in dispersive media[J]. Optics Express, 2011, 19(4):3406-3417.
    [79] Van den Berg S A, Persijn S T, Kok G J P, et al. Many-wavelength interferometry with thousands of lasers for absolute distance measurement[J]. Physical Review Letters, 2012, 108(18):183901.
    [80] Wu H, Zhang F, Meng F, et al. Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser[J]. Measurement Science and Technology, 2015, 27(1):015202.
    [81] Park J, Jin J, Kim J A, et al. Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser[J]. Applied Physics Letters, 2016, 109(24):244103.
    [82] Xia H, Yao J. Characterization of subpicosecond pulses based on temporal interferometry with real-time tracking of higher order dispersion and optical time delay[J]. Journal of Lightwave Technology, 2009, 27(22):5029-5037.
    [83] Xia H, Zhang C. Ultrafast ranging lidar based on real-time Fourier transformation[J]. Optics Letters, 2009, 34(14):2108-2110.
    [84] Xia Haiyun. Ultrafast femtosecond ranging lidar based on real-time dispersive Fourier transformation[D]. Beijing:Beihang University, 2011.
    [85] Xia H, Zhang C. Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry[J]. Optics Express, 2010, 18(5):4118-4129.
    [86] La Lone B M, Marshall B R, Miller E K, et al. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments[J]. Review of Scientific Instruments, 2015, 86(2):023112.
    [87] Bennett C V, La Lone B M, Younk P W, et al. Broadband laser ranging development at the DOE labs[Invited] [C]//SPIE, 2017, 10089:100890F.
    [88] Kostinski N, Rhodes M A, Catenacci J, et al. Broadband laser ranging:signal analysis and interpretation[Invited] [C]//SPIE, 2017, 10089:100890G.
    [89] Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10):1153-1155.
    [90] Cui M, Schouten R N, Bhattacharya N, et al. Experimental demonstration of distance measurement with a femtosecond frequency comb laser[J]. Journal of the European Optical Society-Rapid Publications, 2008(3):08003.
    [91] Cui M, Zeitouny M G, Bhattacharya N, et al. High-accuracy long-distance measurements in air with a frequency comb laser[J]. Optics Letters, 2009, 34(13):1982-1984.
    [92] Ciddor P E. Refractive index of air:new equations for the visible and near infrared[J]. Applied Optics, 1996, 35(9):1566-1573.
    [93] Bnsch G, Potulski E. Measurement of the refractive index of air and comparison with modified Edln's formulae[J]. Metrologia, 1998, 35(2):133-139.
    [94] Earnshaw K, Owens J. A dual wavelength optical distance measuring instrument which measures air density[J]. IEEE Journal of Quantum Electronics, 1967, 3(6):257-258.
    [95] Balling P, Kren P, Maika P, et al. Femtosecond frequency comb based distance measurement in air[J]. Optics Express, 2009, 17(11):9300-9313.
    [96] Joo K N, Kim Y, Kim S W. Distance measurements by combined method based on a femtosecond pulse laser[J]. Optics Express, 2008, 16(24):19799-19806.
    [97] Wei D, Matsumoto H. Measurement accuracy of the pulse repetition interval-based excess fraction (PRIEF) method:an analogy-based theoretical analysis[J]. Journal of the European Optical Society-Rapid Publications, 2012(7):12050.
    [98] Wei D, Takamasu K, Matsumoto H. Synthetic adjacent pulse repetition interval length method to solve integer ambiguity problem:theoretical analysis[J]. Journal of the European Optical Society-Rapid Publications, 2013(8):13016.
    [99] Wei D, Aketagawa M. Comparison of length measurements provided by a femtosecond optical frequency comb[J]. Optics Express, 2014, 22(6):7040-7045.
    [100] Wei D, Takahashi S, Takamasu K, et al. Time-of-flight method using multiple pulse train interference as a time recorder[J]. Optics Express, 2011, 19(6):4881-4889.
    [101] Wang X, Takahashi S, Takamasu K, et al. Space position measurement using long-path heterodyne interferometer with optical frequency comb[J]. Optics Express, 2012, 20(3):2725-2732.
    [102] Xing Shujian, Zhang Fumin, Cao Shiying, et al. Arbitrary and absolute length measurement based on femtosecond optical frequency comb[J]. Acta Phys Sin, 2013, 62(17):170603. (in Chinese)
    [103] Wu H, Zhang F, Cao S, et al. Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser[J]. Optics Express, 2014, 22(9):10380-10397.
    [104] Nakajima Y, Minoshima K. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement[J]. Optics Express, 2015, 23(20):25979-25987.
    [105] Liu Tingyang, Zhang Fumin, Wu Hanzhong, et al. Absolute distance ranging by means of chirped pulse interferometry[J]. Acta Phys Sin, 2016, 65(2):53-61. (in Chinese)
    [106] Matsumoto H, Zhu Y, Iwasaki S, et al. Measurement of the change in air refractive index and distance by means of a two-color interferometer[J]. Applied Optics, 1992, 31(22):4522-4526.
    [107] Yamaoka Y, Minoshima K, Matsumoto H. Direct measurement of the group refractive index of air with interferometry between adjacent femtosecond pulses[J]. Applied Optics, 2002, 41(21):4318-4324.
    [108] Minoshima K, Arai K, Inaba H. High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs[J]. Optics Express, 2011, 19(27):26095-26105.
    [109] Wu G, Arai K, Takahashi M, et al. High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs[J]. Measurement Science and Technology, 2013, 24(1):015203.
    [110] Kang H J, Chun B J, Jang Y S, et al. Real-time compensation of the refractive index of air in distance measurement[J]. Optics Express, 2015, 23(20):26377-26385.
    [111] Wu H, Zhang F, Liu T, et al. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry[J]. Optics Express, 2016, 24(21):24361-24376.
    [112] Lee S H, Lee J, Kim Y J, et al. Active compensation of large dispersion of femtosecond pulses for precision laser ranging[J]. Optics Express, 2011, 19(5):4002-4008.
    [113] Wu Tengfei, Liang Zhiguo, Yan Jiahua. Theoretical study on air dispersion compensation in the distance measurement of femtosecond pulsed laser[J]. Chinese Journal of Lasers, 2012, 39(12):168-173. (in Chinese)
    [114] Wu T, Liang Z, Ye P. Dispersion compensation for absolute distance measurement based on the femtosecond optical frequency comb[C]//International Symposium on Precision Engineering Measurement and Instrumentation, SPIE, 2013, 87590:87590F.
    [115] Yang F, Zhang J, Zhan Y. Femtosecond laser range finders based on traditional cross correlation method and frequency resolved dispersion compensation method[J]. Optics Communications, 2014, 316:179-189.
  • [1] 赵树森, 何宏智, 韩世飞, 姜璐, 杜家宝, 于海娟, 林学春, 张谷令.  透明硬脆材料激光剥离关键问题研究(特邀) . 红外与激光工程, 2024, 53(1): 20230487-1-20230487-14. doi: 10.3788/IRLA20230487
    [2] 吴凡, 翟东升, 李祝莲, 汤儒峰, 皮晓宇, 李语强.  激光测距中激光功率实时监测系统设计与实现 . 红外与激光工程, 2023, 52(10): 20230109-1-20230109-7. doi: 10.3788/IRLA20230109
    [3] 王谦豪, 杨小君, 温文龙, 赵华龙, 李益.  飞秒激光微加工中诱导空气等离子体的超快观测研究 . 红外与激光工程, 2023, 52(11): 20230158-1-20230158-11. doi: 10.3788/IRLA20230158
    [4] 毕帅, 张晓兵, 张伟, 李元成, 马宁, 蔡敏, 毛忠.  超快激光加工小孔穿透成形时间的影响因素试验研究 . 红外与激光工程, 2023, 52(12): 20230347-1-20230347-10. doi: 10.3788/IRLA20230347
    [5] 王涛, 李灿, 刘洋, 任博, 唐振强, 常洪祥, 谢戈辉, 郭琨, 吴坚, 许将明, 冷进勇, 马鹏飞, 粟荣涛, 李文雪, 周朴.  基于光纤拉伸器锁相实现两路超快激光相干偏振合成 . 红外与激光工程, 2023, 52(6): 20220869-1-20220869-8. doi: 10.3788/IRLA20220869
    [6] 郭婕, 闫东钰, 毕根毓, 丰傲然, 刘博文, 储玉喜, 宋有建, 胡明列.  色散管理光纤锁模激光器在近零色散域的非线性优化 . 红外与激光工程, 2022, 51(12): 20220226-1-20220226-7. doi: 10.3788/IRLA20220226
    [7] 刘雨晴, 孙洪波.  非线性激光制造的进展与应用(特邀) . 红外与激光工程, 2022, 51(1): 20220005-1-20220005-15. doi: 10.3788/IRLA20220005
    [8] 林子杰, 徐剑, 程亚.  激光辅助三维金属微打印(特邀) . 红外与激光工程, 2020, 49(12): 20201079-1-20201079-17. doi: 10.3788/IRLA20201079
    [9] 孙敬华, 孙克雄, 林志芳, 孙继芬, 晋路, 徐永钊.  高功率高重复频率飞秒掺镱光纤激光频率梳的研究(特邀) . 红外与激光工程, 2019, 48(1): 103001-0103001(9). doi: 10.3788/IRLA201948.0103001
    [10] 黄民双, 刘晓晨, 马鹏.  脉冲飞行时间激光测距系统中周期误差补偿 . 红外与激光工程, 2018, 47(3): 317004-0317004(5). doi: 10.3788/IRLA201847.0317004
    [11] 郭荣幸, 赵亚飞, 马鹏阁, 陈恩庆.  基于非对称sinc函数拟合的激光测距算法优化 . 红外与激光工程, 2017, 46(8): 806008-0806008(7). doi: 10.3788/IRLA201746.0806008
    [12] 李祝莲, 张海涛, 李语强, 伏红林, 翟东升.  53 cm双筒望远镜高重频空间碎片激光测距系统 . 红外与激光工程, 2017, 46(7): 729001-0729001(5). doi: 10.3788/IRLA201746.0729001
    [13] 张忠萍, 程志恩, 张海峰, 邓华荣, 江海.  地基激光测距系统观测空间碎片及其探测能力研究 . 红外与激光工程, 2017, 46(3): 329001-0329001(7). doi: 10.3788/IRLA201746.0329001
    [14] 薛莉, 翟东升, 李祝莲, 李语强, 熊耀恒, 李明.  激光测距中APD阵列探测信噪比分析 . 红外与激光工程, 2017, 46(3): 306001-0306001(8). doi: 10.3788/IRLA201746.0306001
    [15] 张忠萍, 张海峰, 邓华荣, 程志恩, 李朴, 曹建军, 慎露润.  双望远镜的空间碎片激光测距试验研究 . 红外与激光工程, 2016, 45(1): 102002-0102002(7). doi: 10.3788/IRLA201645.0102002
    [16] 范培迅, 钟敏霖.  超快激光制备金属表面微纳米抗反射结构进展 . 红外与激光工程, 2016, 45(6): 621001-0621001(12). doi: 10.3788/IRLA201645.0621001
    [17] 杨晶, 赵佳宇, 郭兰军, 刘伟伟.  超快激光成丝产生太赫兹波的研究 . 红外与激光工程, 2015, 44(3): 996-1007.
    [18] 杨成娟, 田延岭, 崔良玉, 张大卫.  超快激光辐照诱导金属钛的变化 . 红外与激光工程, 2015, 44(7): 2002-2007.
    [19] 杨芳, 张鑫, 贺岩, 陈卫标.  采用高速伪随机码调制和光子计数技术的光纤激光测距系统 . 红外与激光工程, 2013, 42(12): 3234-3238.
    [20] 王心遥, 张珂殊.  基于欠采样的激光测距数字鉴相方法 . 红外与激光工程, 2013, 42(5): 1330-1337.
  • 加载中
计量
  • 文章访问数:  682
  • HTML全文浏览量:  149
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-10
  • 修回日期:  2018-06-20
  • 刊出日期:  2018-10-25

飞秒激光频率梳测距综述

doi: 10.3788/IRLA201847.1006008
    作者简介:

    赵力杰(1994-),男,硕士生,主要从事激光雷达遥感方面的研究。Email:zhaolj@mail.ustc.edu.cn

  • 中图分类号: TN249;TN958.98

摘要: 精准的距离测量对于卫星编队飞行、行星空间定位、大型结构形状测量、微小位移测量以及工业制造测量等方面具有重要意义。近年来,基于飞秒激光频率梳的测距技术以其测量速度快、准确度高等优点成为国际研究热点。在简要阐述飞秒激光频率梳原理特性基础上,分析了目前国内外主要的飞秒激光频率梳测距的原理及测距结果,包括飞行时间法、多波长干涉法、双频率梳法、空间色散干涉法、实时色散傅里叶变换法以及多技术综合测距法。简要介绍了在测量过程中对空气折射率修正和色散补偿方法,对各类测距方法进行了对比总结,着重介绍了基于飞秒激光频率梳的测距最新研究进展。

English Abstract

参考文献 (115)

目录

    /

    返回文章
    返回