留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制

许绘香 孔国利

许绘香, 孔国利. 采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制[J]. 红外与激光工程, 2020, 49(9): 20190551. doi: 10.3788/IRLA20190551
引用本文: 许绘香, 孔国利. 采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制[J]. 红外与激光工程, 2020, 49(9): 20190551. doi: 10.3788/IRLA20190551
Xu Huixiang, Kong Guoli. Development of pressure control system for laser infrared multipass cell using Ziegler-Nichols-PID algorithm[J]. Infrared and Laser Engineering, 2020, 49(9): 20190551. doi: 10.3788/IRLA20190551
Citation: Xu Huixiang, Kong Guoli. Development of pressure control system for laser infrared multipass cell using Ziegler-Nichols-PID algorithm[J]. Infrared and Laser Engineering, 2020, 49(9): 20190551. doi: 10.3788/IRLA20190551

采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制

doi: 10.3788/IRLA20190551
基金项目: 河南省高等学校重点科研项目(20B520036);河南省科技攻关项目(182102210150);郑州工程技术学院青年创新基金项目(QNCXJJ2019K5)
详细信息
    作者简介:

    孔国利(1973-),男,副教授,硕士,主要从事激光检测技术与智能控制方面的研究。Email:kguoli73@126.com

    通讯作者: 许绘香(1980-),女,副教授,硕士,主要从事智能控制与数据处理方面的研究。Email:xuhx80@126.com
  • 中图分类号: TM921.51

Development of pressure control system for laser infrared multipass cell using Ziegler-Nichols-PID algorithm

  • 摘要: 为了实现CO2气体同位素的高性能检测,研制了高精度、高稳定性的激光红外多通池压强控制系统。硬件方面,采用压强传感器连接于多通池前、后端,检测多通池内部气压,主控制器通过PWM信号,调控多通池前、后端比例阀导通状态,从而实现压强的闭环控制。软件方面,采用Ziegier-Nichols工程整定方法,完成对 PI D 3个参数的确定。结果表明:多通池压强为60 Torr(1 Torr=133.322 Pa)时,控制精度为±0.04 Torr。试验中,利用研制的多通池压强控制系统对13CO212CO2气体分子在4.3 μm吸收光谱进行测量。随着气体压强从0.026~0.066 atm (1 atm= 101 325 Pa),13CO212CO2气体分子吸收光谱的峰值随着压强增大而增大,吸收光谱宽度也随着压强的增大而增大。同时,利用红外气体检测系统对CO2同位素丰度进行长达2 h的测量。CO2同位素丰度均值为−9.081‰,测量值在−8.351‰~−9.736‰之间波动,最大偏差值为0.73‰。可以证明:该系统为红外CO2气体同位素的高性能检测提供可靠保障。
  • 图  1  多通池压强控制系统

    Figure  1.  Pressure control system for multi-pass gas cell

    图  2  比例阀控制电路

    Figure  2.  Proportional valve control circuit

    图  3  多通池压强等幅震荡

    Figure  3.  Equal-amplitude oscillation of pressure of multi pass cell

    图  4  压强控制系统

    Figure  4.  Pressure control system

    图  5  压强控制曲线

    Figure  5.  Pressure control curve

    图  6  压强控制数据(60 Torr)

    Figure  6.  Pressure control data (60 Torr)

    图  7  13CO2吸收光谱与压强的关系

    Figure  7.  Relation between 13CO2 absorption spectrum and pressure

    图  8  12CO2吸收光谱与压强的关系

    Figure  8.  Relation between 12CO2 absorption spectrum and pressure

    图  9  13CO212CO2在0.26 atm压强下的吸收谱线

    Figure  9.  Absorption lines of 13CO2 and 12CO2 at pressure of 0.26 atm

    图  10  CO2同位素丰度测量数据

    Figure  10.  CO2 isotope abundance measurement data

    表  1  Ziegier-Nichols工程整定方法

    Table  1.   Ziegier-Nichols engineering tuning method

    ParameterTPTITD
    P2·δPR
    PD1.25δP0.12TPR
    PI2.2δPR0.85TP
    PID1.67δP0.5TPR0.125TP
    下载: 导出CSV
  • [1] Taylor S R. Stable isotope geochemistry [J]. Reviews of Geophysics, 2009, 17(4): 839-850.
    [2] 李春光. 基于中红外半导体激光器的气体检测系统的研制[D]. 长春: 吉林大学, 2016.

    Li Chunguang. Research and development of gas detection system based on mid-infrared semiconductor lasers[D]. Changchun: Jilin University, 2016. (in Chinese)
    [3] Mckellar A R W, Watson J K G, Howard B J. The NO dimer: <sup>15</sup>N isotopic infrared spectra, line-widths, and force field [J]. Molecular Physics, 1995, 86(2): 273-286. doi:  10.1080/00268979500102011
    [4] 陈凯, 梅茂飞. 基于激光传感器的气体浓度检测研究[J]. 激光杂志, 2018, 39(7): 50-54.

    Chen Kai, Mei Maofei. Detection of gas concentrations based on wireless sensor and laser technology [J]. Laser Journal, 2018, 39(7): 50-54. (in Chinese)
    [5] 云玉新, 吕天光, 韩洪, 等. 气体红外吸收特性受压强与温度的影响分析[J]. 红外与激光工程, 2011, 40(6): 992-996. doi:  10.3969/j.issn.1007-2276.2011.06.003

    Yun Yuxin, Lv Tianguang, Han Hong, et al. Effects of pressure and temperature on gaseous infrared absorption properties [J]. Infrared and Laser Engineering, 2011, 40(6): 992-996. (in Chinese) doi:  10.3969/j.issn.1007-2276.2011.06.003
    [6] Toth R A, Miller C E, Devi V M, et al. Air-broadened halfwidth and pressure shift coefficients of <sup>12</sup>C<sup>16</sup>O2 bands: 4750-7000 cm<sup>-1</sup> [J]. Journal of Molecular Spectroscopy, 2007, 246(2): 133-157. doi:  10.1016/j.jms.2007.09.005
    [7] Guochen H E, Xingming D. Study and application of gas chromatography electron flow/pressure control module [J]. Optical Instruments, 2011, 33(4): 23-27.
    [8] 贾良权, 刘文清, 刘建国, 等. 温度和压强变化对二次谐波反演结果的影响[J]. 中国激光, 2014, 41(12): 1215004. doi:  10.3788/CJL201441.1215004

    Jia Liangquan, Liu Wenqing, Liu Jianguo, et al. Effects of temperature and pressure changes on the second harmonic inversion results [J]. Chinese Journal of Lasers, 2014, 41(12): 1215004. (in Chinese) doi:  10.3788/CJL201441.1215004
    [9] 王征, 常卫国, 栾鑫. 气体压力自调节系统的设计与实现[J]. 气象水文海洋仪器, 2010, 27(4): 101-104. doi:  10.3969/j.issn.1006-009X.2010.04.025

    Wang Zheng, Chang Weiguo, Luo Xin. Gas pressure self-adjusting system [J]. Meteorological, Hydrological and Marine Instruments, 2010, 27(4): 101-104. (in Chinese) doi:  10.3969/j.issn.1006-009X.2010.04.025
    [10] 王贵师, 蔡廷栋, 汪磊, 等. 基于数字频率锁定技术实时探测实际大气中甲烷浓度[J]. 中国激光, 2011, 38(10): 1008002. doi:  10.3788/CJL201138.1008002

    Wang Guishi, Cai Tingdong, Wang Lei, et al. Application of digital frequency Locking techniques in real-time measurement of methane in atmosphere [J]. Chinese Journal of Lasers, 2011, 38(10): 1008002. (in Chinese) doi:  10.3788/CJL201138.1008002
    [11] 战俊彤, 付强, 段锦, 等. 利用位置式数字 PID 算法提高 DFB 激光器驱动电源稳定性[J]. 红外与激光工程, 2015, 44(6): 1757-1761.

    Zhan Juntong, Fu Qiang, Duan Jin, et al. Stability improvement of DFB laser driving power using digital position PID algorithm[J]. Infrared and Laser Engineering, 2015, 44(6): 1757-1761.
    [12] 穆叶, 胡天立, 陈晨, 等. 采用模拟PID控制的DFB激光器温度控制系统研制[J]. 红外与激光工程, 2019, 48(4): 0405001. doi:  10.3788/IRLA201948.0405001

    Mu Ye, Hu Tianli, Chen Chen, et al. Development of temperature control system of DFB laser using analog PID control [J]. Infrared and Laser Engineering, 2019, 48(4): 0405001. (in Chinese) doi:  10.3788/IRLA201948.0405001
  • [1] 刘尚波, 丹泽升, 廉保旺, 徐金涛, 曹辉.  干涉式闭环光纤陀螺仪的PSO-PID控制优化方法 . 红外与激光工程, 2024, 53(3): 20230626-1-20230626-12. doi: 10.3788/IRLA20230626
    [2] 李恒宽, 朴亨, 王鹏, 姜炎坤, 李峥, 陈晨, 曲娜, 白晖峰, 王彪, 李美萱.  基于近红外吸收光谱技术的高精度CO2检测系统的研制 . 红外与激光工程, 2023, 52(3): 20210828-1-20210828-7. doi: 10.3788/IRLA20210828
    [3] 赵晓虎, 孙鹏帅, 张志荣, 王前进, 庞涛, 孙苗, 庄飞宇.  基于跨波长调制和直接吸收光谱的宽量程多气体检测方法 . 红外与激光工程, 2023, 52(1): 20220284-1-20220284-10. doi: 10.3788/IRLA20220284
    [4] 姜炎坤, 朴亨, 王鹏, 李恒宽, 李峥, 王彪, 白晖峰, 陈晨.  采用线性自抗扰技术的高精度温度控制系统研制 . 红外与激光工程, 2023, 52(2): 20210813-1-20210813-6. doi: 10.3788/IRLA20210813
    [5] 侯月, 黄克谨, 于冠一, 张鹏泉.  基于红外TDLAS技术的高精度CO2同位素检测系统的研制 . 红外与激光工程, 2021, 50(4): 20200083-1-20200083-5. doi: 10.3788/IRLA20200083
    [6] 侯月, 黄克谨.  用于红外气体检测的多通池温度、压强控制系统研制 . 红外与激光工程, 2020, 49(10): 20190525-1-20190525-7. doi: 10.3788/IRLA20190525
    [7] 吴天昊, 柯常军, 姜永恒, 孔心怡, 钟艳红.  CO2激光多程平移法制备高质量梯形PMMA微通道 . 红外与激光工程, 2019, 48(3): 306003-0306003(5). doi: 10.3788/IRLA201948.0306003
    [8] 李国林, 袁子琪, 季文海.  应用于油田伴生气H2S气体检测实验研究 . 红外与激光工程, 2019, 48(8): 813005-0813005(7). doi: 10.3788/IRLA201948.0813005
    [9] 李唐安, 李世阳, 张家明, 孙轩, 郭荣静.  基于Goertzel算法的红外气体检测方法 . 红外与激光工程, 2019, 48(3): 304003-0304003(6). doi: 10.3788/IRLA201948.0304003
    [10] 孔国利, 苏玉.  用于激光气体同位素探测的多通池温度控制系统研制 . 红外与激光工程, 2019, 48(8): 805006-0805006(7). doi: 10.3788/IRLA201948.0805006
    [11] 穆叶, 胡天立, 陈晨, 宫鹤, 李士军.  采用模拟PID控制的DFB激光器温度控制系统研制 . 红外与激光工程, 2019, 48(4): 405001-0405001(7). doi: 10.3788/IRLA201948.0405001
    [12] 吕淑媛, 杜绍勇.  基于LabVIEW的空芯光子晶体光纤CO2气体检测系统 . 红外与激光工程, 2018, 47(11): 1117002-1117002(6). doi: 10.3788/IRLA201847.1117002
    [13] 蒋荣秋, 邓伟芬, 汪倩倩, 侯月, 陈晨.  用于红外气体检测的高稳定性DFB激光器驱动电源 . 红外与激光工程, 2018, 47(5): 505004-0505004(7). doi: 10.3788/IRLA201847.0505004
    [14] 侯幸林, 罗海波, 周培培.  基于局部信息熵最大的多曝光控制方法 . 红外与激光工程, 2017, 46(7): 726001-0726001(7). doi: 10.3788/IRLA201746.0726001
    [15] 赵彦东, 方勇华, 李扬裕, 李大成.  亥姆霍兹光声光谱多气体检测器设计和优化 . 红外与激光工程, 2017, 46(6): 620005-0620005(9). doi: 10.3788/IRLA201746.0620005
    [16] 于德洋, 郭立红, 陈飞, 孟范江, 杨贵龙, 邵明振.  高功率TEA CO2激光器控制系统设计 . 红外与激光工程, 2016, 45(7): 705002-0705002(6). doi: 10.3788/IRLA201645.0705002
    [17] 陈晨, 秦佳男, 张雪, 林君, 王言章.  用于SERF原子磁力仪的DFB激光器温度控制系统 . 红外与激光工程, 2016, 45(12): 1205004-1205004(7). doi: 10.3788/IRLA201645.1205004
    [18] 李相贤, 王振, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国.  温室气体及碳同位素比值傅里叶变换红外光谱分析的温度依赖关系研究 . 红外与激光工程, 2015, 44(4): 1178-1185.
    [19] 谭秋林, 杨明亮, 熊继军, 薛晨阳, 刘俊, 张文栋.  红外光学气体检测中的参数修正函数浓度计算与补偿方法 . 红外与激光工程, 2014, 43(5): 1396-1400.
    [20] 戴俊珂, 姜海明, 钟奇润, 谢康, 曹文峰.  基于自整定模糊PID算法的LD温度控制系统 . 红外与激光工程, 2014, 43(10): 3287-3291.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  579
  • HTML全文浏览量:  254
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-03
  • 修回日期:  2019-12-28
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2020-09-22

采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制

doi: 10.3788/IRLA20190551
    作者简介:

    孔国利(1973-),男,副教授,硕士,主要从事激光检测技术与智能控制方面的研究。Email:kguoli73@126.com

    通讯作者: 许绘香(1980-),女,副教授,硕士,主要从事智能控制与数据处理方面的研究。Email:xuhx80@126.com
基金项目:  河南省高等学校重点科研项目(20B520036);河南省科技攻关项目(182102210150);郑州工程技术学院青年创新基金项目(QNCXJJ2019K5)
  • 中图分类号: TM921.51

摘要: 为了实现CO2气体同位素的高性能检测,研制了高精度、高稳定性的激光红外多通池压强控制系统。硬件方面,采用压强传感器连接于多通池前、后端,检测多通池内部气压,主控制器通过PWM信号,调控多通池前、后端比例阀导通状态,从而实现压强的闭环控制。软件方面,采用Ziegier-Nichols工程整定方法,完成对 PI D 3个参数的确定。结果表明:多通池压强为60 Torr(1 Torr=133.322 Pa)时,控制精度为±0.04 Torr。试验中,利用研制的多通池压强控制系统对13CO212CO2气体分子在4.3 μm吸收光谱进行测量。随着气体压强从0.026~0.066 atm (1 atm= 101 325 Pa),13CO212CO2气体分子吸收光谱的峰值随着压强增大而增大,吸收光谱宽度也随着压强的增大而增大。同时,利用红外气体检测系统对CO2同位素丰度进行长达2 h的测量。CO2同位素丰度均值为−9.081‰,测量值在−8.351‰~−9.736‰之间波动,最大偏差值为0.73‰。可以证明:该系统为红外CO2气体同位素的高性能检测提供可靠保障。

English Abstract

    • 可实现气体同位素探测的技术有质谱法[1]、色谱法[2]、火焰电离技术[3]等,它们均不能实现在线检测。由于基于气体红外吸收光谱检测的仪器,就有体积小、便携性等优点,可实现在线检测。但是被测气体红外吸收谱线强度随着环境压强等因素变化而变化,从而影响气体同位素检测精度和稳定性。因此。在气体检测过程中,对多通池内部被测气体的压强进行高精度调控是必须得的。

      近些年,国外相继研制出多种类型的多通气体吸收池压强控制系统。英国德鲁克公司生产的高精度压强控制器DPI515,能够实现快速、高精度的压强调控,控制精度可达到±0.01% F.S.。国内产品有YWK-50-C系列的压强控制器,控制精度较差。以上压强控制器均存在调节时长,超调严重等问题。

      基于国内外的研究现状,针对CO2同位素检测中压强影响参数,研制了采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统。

    • 用于红外气体检测的多通池压强控制系统如图1所示。

      图  1  多通池压强控制系统

      Figure 1.  Pressure control system for multi-pass gas cell

      多通池压强控制系统包含两个比例阀,一个压强传感器以及一个真空低压泵[4-8]。首先关闭多通池入气端的比例阀,开启多通池出气端的比例阀和真空低压泵,将多通池内部气体尽量抽净。然后,关闭多通池出气端的比例阀和真空低压泵,开启多通池入气端的比例阀,让气源缓缓冲入多通池内。此时,压强传感器能够实时测量多通池内部气压,主控制器STM32控制AD转换器将压强传感器输出的模拟信号转换为数字信号。主控制器STM32将此数字信号与设定目标压强相比较,然后通过输出PWM信号驱动,调控多通池入气端的比例阀,从而实现压强的闭环控制[9]

    • 多通池压强控制系统包含两个比例阀,一个压强传感器以及一个真空低压泵。多通池压强控制系统工作流程已在前文进行介绍,此处不再赘述。在压强控制器中,比例阀是极为重要的原件。该系统采用PMW驱动方式,实现对比例阀的调控,电路如图2所示。

      图  2  比例阀控制电路

      Figure 2.  Proportional valve control circuit

      比例阀控制电路由两部分组成,光耦隔离器和驱动变换电路。主控制器STM32输出PWM信号,通过光耦隔离器,然后通过SN75423进行电压变换,从而达到驱动比例阀的电压要求。

      其中,压强传感器选取方面,采用世界知名压强传感器公司美国MEAS的产品,型号为U5200。该 压强传感器采用模块化设计理念,既可为科研提供灵活的操控需要,也可满足严苛环境下的特殊应用需求。由于U5200外壳采用304特质不锈钢,具有很好的密封作用,也可以放沙尘和液体腐蚀。其压强检测量程为0~106 Torr,对应输出电压幅值范围为0~5 V,检测精确为±0.5%,绝对误差为0.53 Torr。比例阀选取方面,采用世界知名阀门公司美国Clippard的EVP系列微型比例阀。其可以通过输入参数电压的调节来控制其输出流量大小,进而能够对多通池内部压强进行调节。EVP系列微型比例阀体积小,为圆柱形(直径2.2 cm,高度3.7 cm),允许输入电压幅值最大为12 V。

    • 实际中,针对不同被控对象,PID控制算法参数也不一致[10-12]。由于复杂被控对象的理论模型难以建立,这样就会带来PID控制参数不能确定的问题。所以文中采用Ziegier-Nichols工程整定方法,确定PID控制3个参数,该方法如表1所示。

      表 1  Ziegier-Nichols工程整定方法

      Table 1.  Ziegier-Nichols engineering tuning method

      ParameterTPTITD
      P2·δPR
      PD1.25δP0.12TPR
      PI2.2δPR0.85TP
      PID1.67δP0.5TPR0.125TP

      Ziegier-Nichols工程整定方法运行过程如下:

      (1)首先是PID控制算法中积分项I、微分项D项为零,只存在比例项P

      (2)然后逐渐调大比例项P,检测多通池压强,当多通池压强发生等幅震荡时,此时比例项系数P记为δPR,震荡周期记为TPR

      (3)根据表1 中Ziegier-Nichols工程整定方法,得到比例项系数KP,积分项系数KI,微分项系数KD

      试验中,然后逐渐调大比例项P,当多通池压强达到60 Torr时,出现压强等幅震荡,结果图3所示,记录此时比例项系数δPR为1.8。

      图  3  多通池压强等幅震荡

      Figure 3.  Equal-amplitude oscillation of pressure of multi pass cell

      由多通池压强等幅震荡结果可知,等幅震荡周期TPR为3.1 s,所以δPR=1/KPR=0.556。根据表1可知:PID控制参数TP=1.67δPR = 0.93,TI=0.5TPR=1.55,TD=0.125TPR=0.39。

    • 根据以上多通池压强控制系统各部分模块设计后,绘制各部分模块原理图,然后制成印刷电路板,最后进行各电子器件的焊接。激光红外多通池压强控制系统如图4所示。

      图  4  压强控制系统

      Figure 4.  Pressure control system

      在硬件系统焊接调试过程中,切不可将所有电子元器件全部焊接后再进行调试,需采用由前到后依次对各部分模块进行焊接调试,可避免因某一模块的损坏对整体硬件系统造成损伤。

    • 对多通池内部气体压强开展试验,得到的压强数据如图5所示。

      图  5  压强控制曲线

      Figure 5.  Pressure control curve

      首先将多通池内部气体用真空泵抽至17 Torr,由于多通池连接气路密闭性不够好,最低只能抽到此气压。然后启动压强控制系统,经过6 s后,多通池内部压强无超调地控制到目标压强60 Torr。此后,压强控制系统进行稳定工作,多通池内部气压存在少许波动,如图6所示。

      图  6  压强控制数据(60 Torr)

      Figure 6.  Pressure control data (60 Torr)

      在150~ 200 s时间内,多通池内部气压均值为60 Torr,压强在59.96~60.04 Torr之间波动,最大偏差值为0.04 Torr。由于大气压强为760 Torr,多通池内部压强为60 Torr,存在700 Torr的压强差,所以,不可避免因多通池和连接气路的少许漏气而产生的压强波动。

    • 试验中,利用研制的多通池压强控制系统对13CO212CO2气体分子在4.3 μm吸收光谱进行测量。13CO212CO2气体分子在4.3 μm波段吸收光谱与压强的关系如图7图8所示。

      图  7  13CO2吸收光谱与压强的关系

      Figure 7.  Relation between 13CO2 absorption spectrum and pressure

      图  8  12CO2吸收光谱与压强的关系

      Figure 8.  Relation between 12CO2 absorption spectrum and pressure

      如图7和8所示,13CO212CO2气体分子吸收光谱随着气体压强从0.026 atm到0.046 atm,最后增至0.066 atm,其吸收光谱的峰值随着压强增大而增大,吸收光谱宽度也随着压强的增大而增大。

      同时,笔者对13CO212CO2分子的吸收谱线(2315.36 cm−1和2315.19 cm−1)在不同压强下的形貌进行测量。其中,二者在压强为0.26 atm时,结果如图9所示。

      图  9  13CO212CO2在0.26 atm压强下的吸收谱线

      Figure 9.  Absorption lines of 13CO2 and 12CO2 at pressure of 0.26 atm

      13CO212CO2分子的吸收谱线(2315.36 cm−1和2315.19 cm−1)间距为0.17 cm−1,小谱线间距能够保证二者基态能极差小,在压强控制精度一定的条件下,可以实现更高碳同位素检测精度。当多通池压强增大到0.26 atm 时,二者吸收谱线存在重叠现象。

      为了避免此现象发生,则需要将待测气体控制在一个低压条件下,以防止13CO212CO2气体分子的吸收谱线重叠,达到更佳的光谱分辨率,实现碳同位素丰度的高精度探测。

    • 将被测CO2通入多通池内部,采用研制的多通池压强控制系统温度控制系统将多通池压强控制到60 Torr。然后利用红外气体检测系统对CO2同位素丰度进行长达两个小时的测量,结果如图10所示。

      图  10  CO2同位素丰度测量数据

      Figure 10.  CO2 isotope abundance measurement data

      在长达2 h的测量时间内,CO2同位素丰度均值为−9.081‰,测量值在−8.351‰和−9.736‰之间波动,最大偏差值为0.73‰。该CO2同位素丰度测量值波动较大,主要由于气源CO2波动问题(周围环境中人的呼吸,气瓶中标准气体分层)或红外气体检测系统工作漂移所导致的。

      多通池体积约为250 mL的圆柱体(截面直径约为5 cm),试验中其内部气体不可避免存在气体分层问题,这样就会使CO2同位素丰度测量带来误差,降低测量准确度。而且随着测量时间增加,尤其测量气体组分很多的情况下,因为每种气体分子量不同,在地球重力场条件下,会造成更明显的气体分层,会使气体浓度检测准确度下降。后续工作将对多通池内部气体分层进行有限元分析,然后采用气体分层补偿的方法提升CO2同位素丰度测量准确度。

    • 文中研制了用于红外气体检测的多通池压强控制系统,采用Ziegler-Nichols-PID算法,现实对多通池压强的高精度和高稳定性的控制。结果表明,通池压强为60 Torr时,控制精度为±0.04 Torr。同时,利用该系统对13CO212CO2吸收光谱和CO2同位素丰度进行了测量实验,可以证明:该系统可以为红外CO2气体同位素的高性能检测提供可靠保障。

      为了进一步提升CO2同位素丰度测量精度,笔者从以下方面着手进行研究。(1)吸收线选取方面。选取13CO212CO2两条吸收谱线更近,使得二者基态能极差更小,提升同位素丰度测量精度。(2)为了减少气体因自身重力,导致其在多通池内部分层而带来测量精度下降的问题。笔者将采用动态测量方式,提升同位素丰度测量精度。

参考文献 (12)

目录

    /

    返回文章
    返回