留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)

王军 蒋亚东

王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程, 2019, 48(1): 102001-0102001(10). doi: 10.3788/IRLA201948.0102001
引用本文: 王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程, 2019, 48(1): 102001-0102001(10). doi: 10.3788/IRLA201948.0102001
Wang Jun, Jiang Yadong. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 102001-0102001(10). doi: 10.3788/IRLA201948.0102001
Citation: Wang Jun, Jiang Yadong. Research development about room temperature terahertz detector array technology with microbolometer structure (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 102001-0102001(10). doi: 10.3788/IRLA201948.0102001

室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)

doi: 10.3788/IRLA201948.0102001
基金项目: 

国家自然科学基金研究创新群体(61421002);国防预研项目(41414020903)

详细信息
    作者简介:

    王军(1982-),男,教授,博士生导师,主要从事室温太赫兹和红外探测技术方面的研究。Email:wjun@uestc.edu.cn

    通讯作者: 蒋亚东(1964-),男,教授,博士生导师,主要从事室温光电探测与传感集成器件方面的研究。Email:jiangyd@uestc.edu.cn
  • 中图分类号: TN215

Research development about room temperature terahertz detector array technology with microbolometer structure (invited)

  • 摘要: 在室温太赫兹探测技术领域中,热敏微桥结构的太赫兹探测器具有探测波段宽、阵列规模大、集成度高、实时成像等显著特点。文中对室温太赫兹探测技术、基于热敏材料的太赫兹探测技术国内外发展现状进行了综述,分析了基于氧化钒薄膜微桥结构的非制冷长波红外焦平面探测技术,存在着太赫兹波低吸收探测性能弱的不足,针对太赫兹波探测进行优化设计,同时介绍了电子科技大学在太赫兹探测阵列吸收结构方面的部分研究工作。
  • [1] Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications[J]. Science, 2013, 341:620-621.
    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1:97-105,
    [3] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417:156-159.
    [4] Vitiello M S, Consolino L, Bartalini S, et al. Quantum-limited frequency fluctuations in a terahertz laser[J]. Nature Photonics, 2012, 6:525-528.
    [5] Cai X, Sushkov A B, Suess R. J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in grapheme[J]. Nature Nanotechnology, 2014, 9:814-819.
    [6] Sizov F, Rogalski A. THz detectors[J]. Progress in Quantum Electronics, 2010, 34:278-347.
    [7] Ignacio I, Carlos D, Jean-Francois M, et al. Operation of GaN planar nanodiodes as THz detectors and mixers[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4:670-677.
    [8] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11:865-871.
    [9] Chen S L, Chang Y C, Zhang C, et al. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite[J]. Nature Photonics, 2014, 8:537-542.
    [10] Marinchio H, Chusseau L, Torres J, et al. Room-temperature terahertz mixer based on the simultaneous electronic and optical excitations of plasma waves in a field effect transistor[J]. Applied Physics Letters, 2010, 96:013502.
    [11] Knap W, Rumyantsev S, Vitiello M S, et al. Nanometer size field effect transistors for terahertz detectors[J]. Nanotechnology, 2013, 24:214002.
    [12] Sherry H, Grzyb J, Zhao Y, et al. A 1k pixel CMOS camera chip for 25 fps real-time terahertz imaging applications[C]//ISSCC, 2012:252-254.
    [13] Han R, Zhang Y, Kim Y, et al. 280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13m digital CMOS[C]//ISSCC, 2012:254-256.
    [14] Jiang Y, Jin B, Wu W, et al. Terahertz detectors based on superconducting hot electron bolometers[J]. Science China Information Sciences, 2012, 55:64-71.
    [15] Xiao-Li Y, O'Brien J. A proposal for optical terahertz detection with externally biased nanopore superlattices[J]. Applied Physics Letters, 2014, 104:031104.
    [16] Huhn A K, Spickermann G, Ihring A, et al. Uncooled antenna-coupled terahertz detectors with 22s response time based on BiSb/Sb thermocouples[J]. Applied Physics Letters, 2013, 102:121102.
    [17] Romano M, Chulkov A, Sommier A, et al. Broadband sub-terahertz camera based on photothermal conversion and IR thermography[J]. Journal of Infrared Millimeter and Terahertz Waves, 2016, 37(5):448-461.
    [18] Escorcia I, Grant J, Gough J, et al. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode[J]. Optics Letters, 2016, 41(14):3261-3264.
    [19] Wen Y, Jia D, Wei Ma, et al. Photomechanical meta-molecule array for real-time terahertz imaging[J]. Microsystems Nanoengineering, 2017, 3:17071.
    [20] Lee A W, Hu Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array[J]. Optics Letter, 2005, 30(19):2563.
    [21] Sizov F. Terahertz radiation detectors:the state of the art[J]. Semiconductor Science and Technology, 2018, 33:123001.
    [22] Aseev A L, Esaev D G, Dem'yanenko M A, et al. Terahertz imaging and radiocopy with 160120 microbolometer 90 FPS camera[C]//Proceedings of FEL, 2007:83-85.
    [23] Coppinger M, Sustersic N A, Kolodzey J, et al. Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging[J]. Optical Engineering, 2011, 50(5):053206.
    [24] Oda N, Komiyama S, Hosako I. Bolometer-type THz-wave detector:USA, US200810237469[P]. 2008-08-02.
    [25] Oda N, Yoneyama H, Sasaki T, et al. Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays[C]//SPIE, 2008, 6940:69402Y.
    [26] Hosako I, Sekine N, Oda N, et al. A real-time terahertz imaging system consisting of terahertz quantum cascade laser and uncooled microbolometer array detector[C]//SPIE, 2010, 8023:80230A.
    [27] Oda N, Lee A W, Ishi T, et al. Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser[C]//SPIE, 2012, 8363:83630A.
    [28] Oda N, Ishi T, Kurashina S, et al. Palm-size and real-time terahertz imager, and its application to development of terahertz sources[C]//SPIE, 2013, 8716:871603.
    [29] Oda N, Okubo S, Sudou T, et al. Image reconstruction method for non-synchronous THz signals[C]//SPIE, 2014, 9102:910202.
    [30] Nemoto N, Kanda N, Imai R, et al. High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(2):175-182.
    [31] Pope T, Doucet M, Dupont F, et al. Uncooled detector, optics, and camera development for THz imaging[C]//SPIE, 2009, 7311:73110L.
    [32] Oulachgar H, Marchese L, Alain C, et al. Development of MEMS microbolometer detector for THz applications[C]//IEEE Conference:Infrared Millimeter and Terahertz Waves, 2010:1-2.
    [33] Oulachgar H, Bolduc M, Tremblay M, et al. Simulation and fabrication of large area uncooled microbolometers for Terahertz wave detection[C]//IEEE Conference:Infrared Millimeter and Terahertz Waves, 2011:1-2.
    [34] Bergeron A, Marchese L, Savard , et al. Resolution capability comparison of infrared and terahertz imagers[C]//SPIE, 2011, 8188:81880I.
    [35] Blanchard N, Marchese L, Martel A, et al. Catadioptric optics for high-resolution terahertz imager[C]//SPIE, 2012, 8363:83630B.
    [36] Marchese L, Terroux M, Genereux F, et al. Review of the characteristics of 384288 pixel THz camera for seethrough imaging[C]//SPIE, 2013, 8900:890009.
    [37] Oulachgar H, Mauskopf P, Bolduc M, et al. Design and microfabrication of frequency selective uncooled microbolometer focal plane array for terahertz imaging[C]//IEEE Conference:Infrared Millimeter and Terahertz Waves, 2013:1-2.
    [38] Marchese L, Terroux M, Dufour D, et al. Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera[C]//SPIE, 2014, 9083:90832G.
    [39] Marchese L E, Terroux M, Doucet M, et al. Reflection imaging in the millimeter-wave rage using a video-rate terahertz camera[C]//SPIE, 2016, 9836:98362S.
    [40] Marchese L, Doucet M, Blanchard N, et al. Overcoming the challenges of active THz/MM-wave imaging:an optics perspective[C]//SPIE, 2018, 10639:106392B.
    [41] Simoens F, Durand T, Meilhan J, et al. Terahertz imaging with a quantum cascade laser and amorphous-silicon microbolometer array[C]//SPIE, 2009, 7485:74850M.
    [42] Nguyen D, Simoens F, Ouvrier-Buffet J, et al. Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(3):299-305.
    [43] Simoens F, Meilhan J, Gidon S, et al. Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging[C]//SPIE, 2013, 8846:88460O.
    [44] Gou J, Jiang Y, Wang J. Terahertz absorption characteristics of NiCr film in a microbolometer focal plane array[J]. Micro and Nano Letters, 2014, 9(3):215-217.
    [45] Gou J, Wang J, Li W, et al. Terahertz absorption characteristics of NiCr film and enhanced absorption by reactive ion etching in a microbolometer focal plane array[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34:431-436.
    [46] Gou J, Wang J, Li W, et al. Study on optical properties of nanostructured NiCr filmprepared by magnetron sputtering and RIE for terahertz applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(9):838-844.
    [47] Gou J, Zhang T, Wang J, et al. Spiral antenna-coupled microbridge structures for THz application[J]. Nanoscale Research Letters, 2017, 12:91.
    [48] Gou J, Niu Q, Liang K, et al. Frequency modulation and absorption improvement of THz micro-bolometer with micro-bridge structure by novel spiral-type antennas[J]. Nanoscale Research Letters, 2018, 13:74.
    [49] Wang J, Li W, Gou J, et al. Fabrication and parameters calculation of room temperature terahertz detector with micro-bridge structure[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36:49-59.
    [50] Gou J, Wang J, Zheng X, et al. Detection of terahertz radiation from 2.52 THz CO2 laser using a 320240 vanadium oxide microbolometer focal plane array[J]. RSC Advances, 2015, 5(102):84252-84256.
  • [1] 刘伟, 何兵, 马特, 刘刚.  微测辐射热计器件工艺开发和特性评估 . 红外与激光工程, 2023, 52(1): 20220279-1-20220279-7. doi: 10.3788/IRLA20220279
    [2] 刘一霆, 丁青峰, 冯伟, 朱一帆, 秦华, 孙建东, 程凯.  集成AlGaN/GaN HEMT混频探测器的太赫兹矢量测量系统 . 红外与激光工程, 2023, 52(1): 20220278-1-20220278-8. doi: 10.3788/IRLA20220278
    [3] 朱鹏, 肖磊, 孙泰, 史浩飞.  微纳结构增强型红外探测器研究进展(特邀) . 红外与激光工程, 2022, 51(1): 20210826-1-20210826-16. doi: 10.3788/IRLA20210826
    [4] 姚立斌, 陈楠, 胡窦明, 王英, 毛文彪, 钟昇佑, 张济清.  数字红外焦平面探测器(特邀) . 红外与激光工程, 2022, 51(1): 20210995-1-20210995-11. doi: 10.3788/IRLA20210995
    [5] 吴昊, 朱一帆, 丁青峰, 张金峰, 上官阳, 孙建东, 秦华.  液氮制冷的AlGaN/GaN HEMT太赫兹探测器阵列特性研究 . 红外与激光工程, 2022, 51(12): 20220225-1-20220225-7. doi: 10.3788/IRLA20220225
    [6] 余黎静, 唐利斌, 杨文运, 郝群.  非制冷红外探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211013-1-20211013-15. doi: 10.3788/IRLA20211013
    [7] 马占锋, 王颖, 汪超, 叶帆, 高健飞, 黄立.  一种高性能氧化钒热敏薄膜的制备和应用 . 红外与激光工程, 2021, 50(2): 20200349-1-20200349-6. doi: 10.3788/IRLA20200349
    [8] 刘肇国, 周桓立, 何伟迪, 赵宁, 张彤.  低维材料太赫兹探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211015-1-20211015-10. doi: 10.3788/IRLA20211015
    [9] 廉宇轩, 冯伟, 丁青峰, 朱一帆, 孙建东, 秦华, 程凯.  基于AlGaN/GaN HEMT太赫兹探测器的340 GHz无线通信接收前端 . 红外与激光工程, 2021, 50(5): 20210202-1-20210202-8. doi: 10.3788/IRLA20210202
    [10] 王雅琴, 蔡光艳, 马占锋, 高健飞, 黄立.  共用桥腿式高性能非制冷红外焦平面探测器研究 . 红外与激光工程, 2021, 50(3): 20200330-1-20200330-7. doi: 10.3788/IRLA20200330
    [11] 张鹏, 曹乾涛, 董航荣, 赵鑫, 孙佳文, 吴斌, 刘红元.  大面元太赫兹热释电探测器 . 红外与激光工程, 2020, 49(5): 20190338-20190338-6. doi: 10.3788/IRLA20190338
    [12] 徐正奎, 李晓斌, 乐丽珠, 于振龙, 何俊, 王春兴.  红外双波叠层结构探测器微透镜阵列的设计 . 红外与激光工程, 2019, 48(8): 803003-0803003(5). doi: 10.3788/IRLA201948.0803003
    [13] 潘奕, 郑渚, 丁庆, 姚勇.  宽带太赫兹偶极子光电导接收天线研究 . 红外与激光工程, 2019, 48(1): 125002-0125002(6). doi: 10.3788/IRLA201948.0125002
    [14] 刘子骥, 赵晟晨, 赵征庭, 李聿达, 郑兴, 张磊.  非制冷红外焦平面阵列器件的热时间常数测试方法 . 红外与激光工程, 2019, 48(12): 1204003-1204003(8). doi: 10.3788/IRLA201948.1204003
    [15] 李金伦, 崔少辉, 张静, 张振伟, 张博文, 倪海桥, 牛智川.  蝶形天线增强的InP基室温HEMT太赫兹探测器研究 . 红外与激光工程, 2019, 48(9): 919001-0919001(7). doi: 10.3788/IRLA201948.0919001
    [16] 刘朝阳, 刘力源, 吴南健.  采用CMOS太赫兹波探测器的成像系统 . 红外与激光工程, 2017, 46(1): 125001-0125001(6). doi: 10.3788/IRLA201746.0125001
    [17] 朱颖峰, 韩福忠, 李东升, 黄一彬, 毛京湘.  快速制冷启动的中波320×256红外焦平面探测器研究 . 红外与激光工程, 2014, 43(4): 1032-1036.
    [18] 祖秋艳, 王玮冰, 黄卓磊, 何鑫, 陈大鹏.  二极管非制冷红外探测器及其读出电路设计 . 红外与激光工程, 2013, 42(7): 1680-1684.
    [19] 杨卓, 许向东, 敖天宏, 王志, 樊泰君, 黄龙, 蒋亚东, 陈超.  双层红外微测辐射热计的微桥结构仿真 . 红外与激光工程, 2012, 41(7): 1677-1783.
    [20] 刘晓旻, 王俊俏, 马凤英, 吴宇, 梁二军, 杨国光.  太赫兹辐射的多重反射光杠杆探测方法 . 红外与激光工程, 2012, 41(8): 2058-2062.
  • 加载中
计量
  • 文章访问数:  728
  • HTML全文浏览量:  111
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-18
  • 修回日期:  2018-09-17
  • 刊出日期:  2019-01-25

室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)

doi: 10.3788/IRLA201948.0102001
    作者简介:

    王军(1982-),男,教授,博士生导师,主要从事室温太赫兹和红外探测技术方面的研究。Email:wjun@uestc.edu.cn

    通讯作者: 蒋亚东(1964-),男,教授,博士生导师,主要从事室温光电探测与传感集成器件方面的研究。Email:jiangyd@uestc.edu.cn
基金项目:

国家自然科学基金研究创新群体(61421002);国防预研项目(41414020903)

  • 中图分类号: TN215

摘要: 在室温太赫兹探测技术领域中,热敏微桥结构的太赫兹探测器具有探测波段宽、阵列规模大、集成度高、实时成像等显著特点。文中对室温太赫兹探测技术、基于热敏材料的太赫兹探测技术国内外发展现状进行了综述,分析了基于氧化钒薄膜微桥结构的非制冷长波红外焦平面探测技术,存在着太赫兹波低吸收探测性能弱的不足,针对太赫兹波探测进行优化设计,同时介绍了电子科技大学在太赫兹探测阵列吸收结构方面的部分研究工作。

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回