留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维材料非线性效应的多波长超快激光器研究进展(特邀)

郭波

郭波. 基于二维材料非线性效应的多波长超快激光器研究进展(特邀)[J]. 红外与激光工程, 2019, 48(1): 103002-0103002(22). doi: 10.3788/IRLA201948.0103002
引用本文: 郭波. 基于二维材料非线性效应的多波长超快激光器研究进展(特邀)[J]. 红外与激光工程, 2019, 48(1): 103002-0103002(22). doi: 10.3788/IRLA201948.0103002
Guo Bo. Recent advances in multi-wavelength ultrafast lasers based on nonlinear effects of 2D materials (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 103002-0103002(22). doi: 10.3788/IRLA201948.0103002
Citation: Guo Bo. Recent advances in multi-wavelength ultrafast lasers based on nonlinear effects of 2D materials (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 103002-0103002(22). doi: 10.3788/IRLA201948.0103002

基于二维材料非线性效应的多波长超快激光器研究进展(特邀)

doi: 10.3788/IRLA201948.0103002
基金项目: 

国家自然科学基金(61575051;61875043);“十三五”装备预研共用技术和领域基金(6140414040116CB01012);哈尔滨工程大学111项目(B13015)

详细信息
    作者简介:

    郭波(1980-),男,副教授,硕士生导师,博士,主要从事二维材料光电器件、超快光纤激光技术、光纤光栅及中红外激光器等方面的研究。Email:guobo512@163.com

  • 中图分类号: TN248

Recent advances in multi-wavelength ultrafast lasers based on nonlinear effects of 2D materials (invited)

  • 摘要: 多波长超快激光器在光通信、医学诊断和光学传感等各种应用中有着十分重要的应用前景。2009年以来,石墨烯、拓扑绝缘体、过渡金属硫化物和黑磷等二维材料在超快光子学领域的发展非常快速。它们独特的非线性光学特性,使之能够被用作快速响应、宽带运转的可饱和吸收体且能够容易地集成到激光器中。研究发现,基于二维材料的非线性光学器件是研究激光器内非线性脉冲动力学演化的理想平台。在文中,回顾了二维材料在多波长超快激光器中应用的最新进展。进而,阐述了多波长的耗散孤子、矩形脉冲和亮暗孤子对等脉冲类型。最后,提出了这类多波长超快激光器面临的挑战和应用前景。
  • [1] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-combspectroscopy[J]. Science, 2016, 354(6312):600-613.
    [2] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950):831.
    [3] Li J, Yi X, Lee H, et al. Electro-optical frequency division and stablemicrowave synthesis[J]. Science, 2014, 345(6194):309-313.
    [4] Agrawal G P. Nonlinear Fiber Optics[M]. Berlin:Springer, 2000:195-211.
    [5] Schlager J B, Kawanishi S, Saruwatari M. Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser[J]. Electronics Letters, 1991, 27(22):2072-2073.
    [6] Li S, Chan K T. Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser[J]. Applied Physics Letters, 1998, 72(16):1954-1956.
    [7] Zhao Y, Shu C. A fiber laser for effective generation of tunable single-and dual-wavelength mode-locked optical pulses[J]. Applied Physics Letters, 1998, 72(13):1556-1558.
    [8] Bakhshi B, Andrekson P A. Dual-wavelength 10-GHz actively mode-locked erbium fiber laser[J]. IEEE Photonics Technology Letters, 1999, 11(11):1387-1389.
    [9] Deparis O, Kiyan R, Salik E, et al. Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 1999, 11(10):1238-1240.
    [10] Town G E, Chen L, Smith P W E. Dual-wavelength mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2000, 12(11):1459-1461.
    [11] Pudo D, Chen L R. Actively mode-locked, quadruple-wavelength fibre laser with pump-controlled wavelength switching[J]. Electronics Letters, 2003, 39(3):272-274.
    [12] Lou J W, Carruthers T F, Currie M. 410 GHz mode-locked multiple-wavelength fiber laser[J]. IEEE Photonics Technology Letters, 2004, 16(1):51-53.
    [13] Yao J, Yao J, Deng Z. Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermodenoise[J]. Optics Express, 2004, 12(19):4529-4534.
    [14] Chen Z, Ma S, Dutta N K. Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium[J]. Optics Express, 2009, 17(3):1234-1239.
    [15] Noske D U, Guy M J, Rottwitt K, et al. Dual-wavelength operation of a passively mode-locked figure-of-eight ytterbium-erbium fibre soliton laser[J]. Optics Communications, 1994, 108(4-6):297-301.
    [16] Yun L, Liu X, Mao D. Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser[J]. Optics Express, 2012, 20(19):20992-20997.
    [17] Ning Q Y, Wang S K, Luo A P, et al. Bright-dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser[J]. IEEE Photonics Journal, 2012, 4(5):1647-1652.
    [18] Krzempek K, Sobon G, Sotor J, et al. Fully-integrated dual-wavelength all-fiber source for mode-locked square-shaped mid-IR pulse generation via DFG in PPLN[J]. Optics Express, 2015, 23(25):32080-32086.
    [19] Jin X, Wang X, Wang X, et al. Tunable multiwavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror[J]. Applied Optics, 2015, 54(28):8260-8264.
    [20] Shao Z, Qiao X, Rong Q, et al. Generation of dual-wavelength square pulse in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion[J]. Applied Optics, 2015, 54(22):6711-6716.
    [21] Posada-Ramrez B, Durn-Snchez M,lvarez-Tamayo R I, et al. Study of a Hi-Bi FOLM for tunable and dual-wavelength operation of a thulium-doped fiber laser[J]. Optics Express, 2017, 25(3):2560-2568.
    [22] Matsas V J, Newson T P, Richardson D J, et al. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15):1391-1393.
    [23] Gong Y D, Tian X L, Tang M, et al. Generation of dual wavelength ultrashort pulse outputs from a passive mode locked fiber ring laser[J]. Optics Communications, 2006, 265(2):628-631.
    [24] Zhang Z, Zhan L, Xu K, et al. Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter[J]. Optics Letters, 2008, 33(4):324-326.
    [25] Chen Z, Sun H, Ma S, et al. Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 2008, 20(24):2066-2068.
    [26] Chen W C, Luo Z C, Xu W C. The interaction of dual wavelength solitons in fiber laser[J]. Laser Physics Letters, 2009, 6(11):816.
    [27] Luo Z C, Luo A P, Xu W C, et al. Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber ring laser[J]. Applied Physics B, 2010, 100(4):811-820.
    [28] Luo Z C, Luo A P, Xu W C, et al. Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter[J]. IEEE Photonics Journal, 2010, 2(4):571-577.
    [29] Luo A P, Luo Z C, Xu W C, et al. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation[J]. Laser Physics Letters, 2011, 8(8):601-605.
    [30] Zhu X, Wang C, Liu S, et al. Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers[J]. IEEE Photonics Technology Letters, 2011, 23(14):956-958.
    [31] Mao D, Liu X, Wang L, et al. Dual-wavelength step-like pulses in an ultra-large negative-dispersion fiber laser[J]. Optics Express, 2011, 19(5):3996-4001.
    [32] Zhang H, Tang D, Zhao L, et al. Dual-wavelength domain wall solitons in a fiber ring laser[J]. Optics Express, 2011, 19(4):3525-3530.
    [33] Yun L, Han D. Evolution of dual-wavelength fiber laser from continuous wave to soliton pulses[J]. Optics Communications, 2012, 285(24):5406-5409.
    [34] Zhang Z X, Xu Z W, Zhang L, et al. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter[J]. Optics Express, 2012, 20(24):26736-26742.
    [35] Mao D, Lu H. Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime[J]. Journal of The Optical Society of America B-Optical Physics, 2012, 29(10):2819-2826.
    [36] Lin H, Guo C, Ruan S, et al. Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-normal-dispersion Yb-doped fiber laser[J]. IEEE Photonics Journal, 2013, 5(5):1501807-1501807.
    [37] Wang X, Zhu Y, Zhou P, et al. Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect[J]. Optics Express, 2013, 21(22):25977-25984.
    [38] Yan Z, Li X, Tang Y, et al. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution[J]. Optics Express, 2015, 23(4):4369-4376.
    [39] Yan Z, Tang Y, Sun B, et al. Switchable multi-wavelength Tm-doped mode-locked fiber laser[J]. Optics Letters, 2015, 40(9):1916-1919.
    [40] Zhang Z, Mou C, Yan Z, et al. Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating[J]. Optics Express, 2015, 23(2):1353-1360.
    [41] Wang S, Zhao Z, Kobayashi Y, et al. Wavelength-spacing controllable, dual-wavelength synchronously mode locked Er:fiber laser oscillator based on dual-branch nonlinear polarization rotation technique[J]. Optics Express, 2016, 24(25):28228-28238.
    [42] Feehan J S, Ilday F O, Brocklesby W S, et al. Simulations and experiments showing the origin of multi-wavelength mode locking in femtosecond, Yb-fiber lasers[J]. Journal of The Optical Society of America B-Optical Physics, 2016, 33(8):1668-1676.
    [43] Zhang H, Tang D Y, Wu X, et al. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Optics Express, 2009, 17(15):12692-12697.
    [44] Luo Z, Luo A, Xu W, et al. Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter[J]. IEEE Photonics Journal, 2011, 3(1):64-70.
    [45] Luo A P, Luo Z, Xu W C, et al. Switchable dual-wavelength passively mode-locked fiber ring laser using SESAM and cascaded fiber Bragg gratings[J]. Laser Physics, 2011, 21(2):395-398.
    [46] Li J, Luo H, Wang L, et al. Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3m and 2m[J]. Scientific Reports, 2015, 5(1):10770-10770.
    [47] Rigaud P, Kermene V, Simos C, et al. Dual-wavelength synchronous ultrashort pulses from a mode-locked Yb-doped multicore fiber laser with spatially dispersed gain[J]. Optics Express, 2015, 23(19):25308-25315.
    [48] Wu Z, Fu S, Chen C, et al. Dual-state dissipative solitons from an all-normal-dispersion erbium-doped fiber laser:continuous wavelength tuning and multi-wavelength emission[J]. Optics Letters, 2015, 40(12):2684-2687.
    [49] Zhang Y, Yang C, Feng Z, et al. Dual-wavelength passively Q-switched single-frequency fiber laser[J]. Optics Express, 2016, 24(14):16149-16155.
    [50] Waritanant T, Major A. Discretely selectable multiwavelength operation of a semiconductor saturable absorber mirror mode-locked Nd:YVO4 laser[J]. Optics Letters, 2017, 42(17):3331-3334.
    [51] Li J, Wang Y, Zhang E, et al. Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength mode-locked Tm-doped fiber laser[J]. Optics Express, 2017, 25(15):17992-17200.
    [52] Zhao X, Zheng Z, Liu L, et al. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube mode-locker and intracavity loss tuning[J]. Optics Express, 2011, 19(2):1168-1173.
    [53] Zhao X, Zheng Z, Liu L, et al. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser[J]. Optics Express, 2012, 20(23):25584-25589.
    [54] Liu X, Han D, Sun Z, et al. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes[J]. Scientific Reports, 2013, 3(1):2718-2718.
    [55] Chen G W, Li W L, Yang H R, et al. Switchable dual-wavelength fiber laser mode-locked by carbon nanotubes[J]. Journal of Modern Optics, 2015, 62(5):353-357.
    [56] Jiang K, Wu Z, Fu S, et al. Switchable dual-wavelength mode-locking of thulium-doped fiber laser Based on SWNTs[J]. IEEE Photonics Technology Letters, 2016, 28(19):2019-2022.
    [57] Geim A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534.
    [58] Zhang H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10):9451-9469.
    [59] Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568-571.
    [60] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139):1226419.
    [61] Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19):3077-3083.
    [62] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9):611-622.
    [63] Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12):899-907.
    [64] Zhang H, Lu S, Zheng J, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6):7249-7260.
    [65] Sobon G. Mode-locking of fiber lasers using novel two-dimensional nanomaterials:graphene and topological insulators[J]. Photonics Research, 2015, 3(2):A56-A63.
    [66] Yu S, Wu X, Wang Y, et al. 2D Materials for optical modulation:challenges and opportunities[J]. Advanced Materials, 2017, 29(14):1606128.
    [67] Liu X, Guo Q, Qiu J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics[J]. Advanced Materials, 2017, 29(14):1605886.
    [68] Guo B. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics[J]. Chinese Optics Letters, 2018, 16(2):020004.
    [69] Liu Z, Wang Y, Zhang X, et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes[J]. Applied Physics Letters, 2009, 94(2):021902.
    [70] Hendry E, Hale P J, Moger J, et al. Coherent nonlinear optical response of graphene[J]. Physical Review Letters, 2010, 105(9):097401.
    [71] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452(7190):970.
    [72] Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science, 2009, 325(5937):178-181.
    [73] Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6):398.
    [74] Zhang Y, He K, Chang C Z, et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit[J]. Nature Physics, 2010, 6(8):584.
    [75] Moore J E. The birth of topological insulators[J]. Nature, 2010, 464(7286):194.
    [76] Hasan M Z, Kane C L. Colloquium:topological insulators[J]. Reviews of Modern Physics, 2010, 82(4):3045.
    [77] Qi X L, Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4):1057.
    [78] Bernard F, Zhang H, Gorza S P, et al. Towards mode-locked fiber laser using topological insulators[C]//Nonlinear Photonics. Optical Society of America, 2012:NTh1A. 5.
    [79] Lu S, Zhao C, Zou Y, et al. Third order nonlinear optical property of Bi2Se3[J]. Optics Express, 2013, 21(2):2072-2082.
    [80] Chen S, Zhao C, Li Y, et al. Broadband optical and microwave nonlinear response in topological insulator[J]. Optical Materials Express, 2014, 4(4):587-596.
    [81] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11):699.
    [82] Wang K, Wang J, Fan J, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10):9260-9267.
    [83] Sun J, Gu Y J, Lei D Y, et al. Mechanistic understanding of excitation-correlated nonlinear optical properties in MoS2 nanosheets and nanodots:the role of exciton resonance[J]. ACS Photonics, 2016, 3(12):2434-2444.
    [84] Ling X, Wang H, Huang S, et al. The renaissance of black phosphorus[J]. Proceedings of the National Academy of Sciences, 2015:201416581.
    [85] Wang X, Lan S. Optical properties of black phosphorus[J]. Advances in Optics and Photonics, 2016, 8(4):618-655.
    [86] Dhanabalan S C, Ponraj J S, Guo Z, et al. Emerging trends in phosphorene fabrication towards next generation devices[J]. Advanced Science, 2017, 4(6):1600305.
    [87] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus:an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9):11183-11194.
    [88] Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 2013, 7(11):842.
    [89] Luo Z, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21):3709-3711.
    [90] Luo Z, Zhou M, Wu D, et al. Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers[J]. Journal of Lightwave Technology, 2011, 29(18):2732-2739.
    [91] Wang Z T, Chen Y, Zhao C J, et al. Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber[J]. IEEE Photonics Journal, 2012, 4(3):869-876.
    [92] Ahmad H, Zulkifli M Z, Muhammad F D, et al. Passively Q-switched 11-channel stable brillouin erbium-doped fiber laser with graphene as the saturable absorber[J]. IEEE Photonics Journal, 2012, 4(5):2050-2056.
    [93] Zhao J, Wang Y, Yan P, et al. Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation[J]. Chinese Physics Letters, 2012, 29(11):114206.
    [94] Lou F, Zhao R, He J, et al. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2):A25-A29.
    [95] Gao Y J, Zhang B Y, Song Q, et al. Dual-wavelength passively Q-switched Nd:GYSGG laser by tungsten disulfide saturable absorber[J]. Applied Optics, 2016, 55(18):4929-4932.
    [96] Zhang H, He J, Wang Z, et al. Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber[J]. Optical Materials Express, 2016, 6(7):2328-2335.
    [97] Zhao Y, Li X, Xu M, et al. Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber[J]. Optics Express, 2013, 21(3):3516-3522.
    [98] Wang B, Yu H, Zhang H, et al. Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser[J]. IEEE Photonics Journal, 2014, 6(3):1-7.
    [99] Lou F, Zhao R, He J, et al. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2):A25-A29.
    [100] Guo J, Zhang H, Li P. Graphene Q-switched eye-safe Nd:Y3Al5O12 ceramic dual-wavelength laser[J]. Applied Optics, 2015, 54(22):6694-6697.
    [101] Chu H, Zhao S, Li T, et al. Dual-wavelength passively Q-switched Nd, Mg:LiTaO3 laser with a monolayer graphene as saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1):343-347.
    [102] Sun Y J, Lee C K, Xu J L, et al. Passively Q-switched tri-wavelength Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber[J]. Photonics Research, 2015, 3(3):A97-A101.
    [103] Liu J, Liu J, Guo Z, et al. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region[J]. Optics Express, 2016, 24(26):30289-30295.
    [104] Zhang H, He J, Wang Z, et al. Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber[J]. Optical Materials Express, 2016, 6(7):2328-2335.
    [105] Luo Z Q, Wang J Z, Zhou M, et al. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field[J]. Laser Physics Letters, 2012, 9(3):229.
    [106] Lau K Y, Bakar M H A, Muhammad F D, et al. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber[J]. Optics Express, 2018, 26(10):12790-12800.
    [107] Zhao J, Wang Y, Ruan S, et al. Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber[J]. JOSA B, 2014, 31(4):716-722.
    [108] Guo B, Ouyang Q, Li S, et al. Dual-wavelength soliton laser based on the graphene ternary composite[J]. Chinese Journal of Lasers, 2017, 44(7):0703012.
    [109] Guo B, Yao Y, Yang Y F, et al. Topological insulator:Bi2Se3/polyvinyl alcohol film-assisted multi-wavelength ultrafast erbium-doped fiber laser[J]. Journal of Applied Physics, 2015, 117(6):063108.
    [110] Guo B, Yao Y, Yang Y F, et al. Tunable multi-wavelength mode-locked fiber laser with topological insulator:Bi2Se3/PVA solution[C]//Optoelectronic Devices and Integration. Optical Society of America, 2015:OW2C. 4.
    [111] Guo B, Yao Y. Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution[J]. Optical Engineering, 2016, 55(8):081315.
    [112] Guo B, Yao Y, Yan P G, et al. Dual-wavelength soliton mode-locked fiber laser with a WS2-based fiber taper[J]. IEEE Photonics Technology Letters, 2016, 28(3):323-326.
    [113] Guo B, Li S, Fan Y, et al. Versatile soliton emission from a WS2 mode-locked fiber laser[J]. Optics Communications, 2018, 406:66-71.
    [114] Zhao R, Li J, Zhang B, et al. Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus[J]. Applied Physics Express, 2016, 9(9):092701.
    [115] Yun L. Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation[J]. Optics Express, 2017, 25(26):32380-32385.
    [116] Liu M, Zhao N, Liu H, et al. Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber[J]. IEEE Photonics Technology Letters, 2014, 26(10):983-986.
    [117] Luo Z, Huang Y, Wang J, et al. Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper[J]. IEEE Photonics Technology Letters, 2012, 24(17):1539-1542.
    [118] Huang S, Wang Y, Yan P, et al. Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser[J]. Optics Express, 2014, 22(10):11417-11426.
    [119] Guo B, Yao Y, Yang Y F, et al. Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber[J]. Photonics Research, 2015, 3(3):94-99.
    [120] Zhao N, Liu M, Liu H, et al. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber[J]. Optics Express, 2014, 22(9):10906-10913.
    [121] Gao L, Zhu T, Huang W, et al. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper[J]. Applied Optics, 2014, 53(28):6452-6456.
    [122] Song Q, Wang G, Zhang B, et al. Passively Q-switched mode-locked dual-wavelength Nd:GYSGG laser using graphene oxide saturable absorber[J]. Optics Communications, 2015, 347:64-67.
    [123] Vengsarkar A M, Lemaire P J, Judkins J B, et al. Long-period fiber gratings as band-rejection filters[C]//Optical Fiber Communication Conference. Optical Society of America, 1995:PD4.
    [124] Intrachat K, Kutz J N. Theory and simulation of passive modelocking dynamics using a long-period fiber grating[J]. IEEE Journal of Quantum Electronics, 2003, 39(12):1572-1578.
    [125] Karar A S, Smy T, Steele A L. Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating[J]. IEEE Journal of Quantum Electronics, 2008, 44(3):254-261.
    [126] Guo B, Yang W L. Ultra-long-period grating as a novel tool for multi-wavelength ultrafast photonics[C]//AOPC 2017:Laser Components, Systems, and Applications. International Society for Optics and Photonics, 2017, 10457:104572R.
    [127] Manakov S V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves[J]. Soviet Physics-JETP, 1974, 38(2):248-253.
    [128] Guo B, Yao Y, Tian J J, et al. Observation of bright-dark soliton pair in a fiber laser with topological insulator[J]. IEEE Photonics Technology Letters, 2015, 27(7):701-704.
    [129] Guo B, Yao Y, Xiao J J, et al. Topological insulator-assisted dual-wavelength fiber laser delivering versatile pulse patterns[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2):8-15.
    [130] Li K X, Song Y R, Tian J R, et al. Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3[J]. IEEE Photonics Journal, 2017, 9(3):1-9.
    [131] Zhao R, Li G, Zhang B, et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J]. Optics Express, 2018, 26(5):5819-5826.
  • [1] 尹志珺, 王振兴, 李荃, 宋仁康, 邓晓, 雷李华.  声子极化激元干涉条纹周期的精密测量研究 . 红外与激光工程, 2023, 52(12): 20230414-1-20230414-9. doi: 10.3788/IRLA20230414
    [2] 刘宁, 周谷禹, 杨夕, 徐纪鹏, 洪琦琳, 黄先燕, 张检发, 刘肯, 朱志宏.  Si3N4/WS2/Al2O3三明治型纳米激光器结构参数优化 . 红外与激光工程, 2023, 52(6): 20230196-1-20230196-7. doi: 10.3788/IRLA20230196
    [3] 张亚凯, 陈晖, 白振岙, 庞亚军, 王雨雷, 吕志伟, 白振旭.  多波长红光金刚石拉曼激光器 . 红外与激光工程, 2023, 52(8): 20230329-1-20230329-7. doi: 10.3788/IRLA20230329
    [4] 黄千千, 黄梓楠, 戴礼龙, 牟成博.  锁模光纤激光器中隐形孤子脉动演化特性研究(特邀) . 红外与激光工程, 2022, 51(1): 20210749-1-20210749-9. doi: 10.3788/IRLA20210749
    [5] 张奕, 侯玉斌, 张倩, 王璞.  基于四波混频效应的1.5 μm多波长单频光纤激光器(特邀) . 红外与激光工程, 2022, 51(6): 20220401-1-20220401-7. doi: 10.3788/IRLA20220401
    [6] 贾欣宇, 兰长勇, 李春.  二维材料在红外探测器中的应用最新进展(特邀) . 红外与激光工程, 2022, 51(7): 20220065-1-20220065-16. doi: 10.3788/IRLA20220065
    [7] 郭婕, 闫东钰, 毕根毓, 丰傲然, 刘博文, 储玉喜, 宋有建, 胡明列.  色散管理光纤锁模激光器在近零色散域的非线性优化 . 红外与激光工程, 2022, 51(12): 20220226-1-20220226-7. doi: 10.3788/IRLA20220226
    [8] 王梦宇, 范乐康, 吴凌峰, 卢志舟, 刘波, 郭状, 谢成峰.  基于超高Q值氟化镁晶体微腔的克尔光频梳产生研究 . 红外与激光工程, 2021, 50(11): 20210481-1-20210481-6. doi: 10.3788/IRLA20210481
    [9] 孙红胜, 梁新刚, 马维刚, 邱超, 杨旺林.  无扫描宽范围多波长成像测温技术 . 红外与激光工程, 2021, 50(5): 20200394-1-20200394-7. doi: 10.3788/IRLA20200394
    [10] 许航瑀, 王鹏, 陈效双, 胡伟达.  二维半导体红外光电探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211017-1-20211017-14. doi: 10.3788/IRLA20211017
    [11] 杨思敏, 汪徐德, 孙梦秋, 梁勤妹.  波长可切换可调谐耗散孤子锁模掺镱光纤激光器 . 红外与激光工程, 2020, 49(10): 20200026-1-20200026-6. doi: 10.3788/IRLA20200026
    [12] 皮一涵, 王春泽, 宋有建, 胡明列.  极低时间抖动的飞秒激光技术(特邀) . 红外与激光工程, 2020, 49(12): 20201058-1-20201058-13. doi: 10.3788/IRLA20201058
    [13] 朱久泰, 郭万龙, 刘锋, 王林, 陈效双.  基于光热载流子调控的二维材料红外与太赫兹探测器研究进展 . 红外与激光工程, 2020, 49(1): 0103001-0103001(10. doi: 10.3788/IRLA202049.0103001
    [14] 张福才, 孙博君, 孙晓刚.  单目标极小值优化法的多波长真温反演研究 . 红外与激光工程, 2019, 48(2): 226002-0226002(6). doi: 10.3788/IRLA201948.0226002
    [15] 侯尚林, 雷景丽, 吴七灵, 王道斌, 李晓晓, 王慧琴, 曹明华.  高非线性光子晶体光纤中飞秒脉冲压缩(特邀) . 红外与激光工程, 2019, 48(1): 103004-0103004(6). doi: 10.3788/IRLA201948.0103004
    [16] 毛梦涛, 陈锦辉, 丁梓轩, 徐飞.  基于光纤二维材料集成器件的脉冲激光器及外场调控(特邀) . 红外与激光工程, 2018, 47(8): 803003-0803003(13). doi: 10.3788/IRLA201847.0803003
    [17] 马菁汀, 刘尊龙, 王民航, 冯飞, 许江盟, 张卫杰.  数字微镜器件调制多波长关联成像系统 . 红外与激光工程, 2017, 46(9): 924001-0924001(7). doi: 10.3788/IRLA201746.0924001
    [18] 沈仲弢, 封常青, 高山山, 陈晓东, 刘树彬.  基于高速相关采样的锁模激光回波实时检测 . 红外与激光工程, 2017, 46(12): 1217002-1217002(6). doi: 10.3788/IRLA201746.1217002
    [19] 葛颜绮, 罗娇林, 张书敏, 唐定远, 沈德元, 赵鹭明.  被动锁模光纤激光器中增益支配孤子的腔至峰值功率钳位效应 . 红外与激光工程, 2014, 43(11): 3533-3539.
    [20] 杨秀峰, 董凤娟, 童峥嵘, 曹晔.  利用非线性偏振旋转效应的可调谐多波长光纤激光器 . 红外与激光工程, 2012, 41(1): 53-57.
  • 加载中
计量
  • 文章访问数:  723
  • HTML全文浏览量:  182
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-05
  • 修回日期:  2018-09-03
  • 刊出日期:  2019-01-25

基于二维材料非线性效应的多波长超快激光器研究进展(特邀)

doi: 10.3788/IRLA201948.0103002
    作者简介:

    郭波(1980-),男,副教授,硕士生导师,博士,主要从事二维材料光电器件、超快光纤激光技术、光纤光栅及中红外激光器等方面的研究。Email:guobo512@163.com

基金项目:

国家自然科学基金(61575051;61875043);“十三五”装备预研共用技术和领域基金(6140414040116CB01012);哈尔滨工程大学111项目(B13015)

  • 中图分类号: TN248

摘要: 多波长超快激光器在光通信、医学诊断和光学传感等各种应用中有着十分重要的应用前景。2009年以来,石墨烯、拓扑绝缘体、过渡金属硫化物和黑磷等二维材料在超快光子学领域的发展非常快速。它们独特的非线性光学特性,使之能够被用作快速响应、宽带运转的可饱和吸收体且能够容易地集成到激光器中。研究发现,基于二维材料的非线性光学器件是研究激光器内非线性脉冲动力学演化的理想平台。在文中,回顾了二维材料在多波长超快激光器中应用的最新进展。进而,阐述了多波长的耗散孤子、矩形脉冲和亮暗孤子对等脉冲类型。最后,提出了这类多波长超快激光器面临的挑战和应用前景。

English Abstract

参考文献 (131)

目录

    /

    返回文章
    返回