留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短脉冲激光微孔加工(上)——理论研究

赵万芹 梅雪松 王文君

赵万芹, 梅雪松, 王文君. 超短脉冲激光微孔加工(上)——理论研究[J]. 红外与激光工程, 2019, 48(1): 106008-0106008(9). doi: 10.3788/IRLA201948.0106008
引用本文: 赵万芹, 梅雪松, 王文君. 超短脉冲激光微孔加工(上)——理论研究[J]. 红外与激光工程, 2019, 48(1): 106008-0106008(9). doi: 10.3788/IRLA201948.0106008
Zhao Wanqin, Mei Xuesong, Wang Wenjun. Ultrashort pulse laser drilling of micro-holes (part 1)——theoretical study[J]. Infrared and Laser Engineering, 2019, 48(1): 106008-0106008(9). doi: 10.3788/IRLA201948.0106008
Citation: Zhao Wanqin, Mei Xuesong, Wang Wenjun. Ultrashort pulse laser drilling of micro-holes (part 1)——theoretical study[J]. Infrared and Laser Engineering, 2019, 48(1): 106008-0106008(9). doi: 10.3788/IRLA201948.0106008

超短脉冲激光微孔加工(上)——理论研究

doi: 10.3788/IRLA201948.0106008
基金项目: 

国家重点研发计划(2017YFB1104602);长江学者和创新团队发展计划(IRT_15R54)

详细信息
    作者简介:

    赵万芹(1983-),女,讲师,博士,主要从事超短脉冲激光微纳精密制造方面的研究。Email:linazhaolinazhao@foxmail.com

  • 中图分类号: TN249

Ultrashort pulse laser drilling of micro-holes (part 1)——theoretical study

  • 摘要: 自20世纪60年代激光器被发明以来,其脉冲宽度被不断压缩至亚皮秒及飞秒量级,使得激光加工技术进入到了超短脉冲阶段。为了进一步优化超短脉冲激光的微加工,理论研究必不可少。主要论述了超短脉冲激光与不同类型材料之间的相互作用机制。简述了超短脉冲激光微孔加工中的典型物理特性,如等离子体效应、自聚焦和光丝效应及锥形辐射等。分析了超短脉冲激光微孔加工的理论研究现状,并得出了目前理论研究中存在的问题。
  • [1] Siegal Y, Glezer E N, L Huang A, et al. Laser-induced phase transitions in semiconductors[J]. Annual Review of Materials Research, 1995, 25(1):223-247.
    [2] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1969, 187(4736):134-136.
    [3] Wang Xiaodong. Ablation and micromachining of metals with short and ultra-short laser pulses[D]. Wuhan:Huazhong University of Science and Technology, 2009. (in Chinese)
    [4] Lu Shiji. A course on solid physics[M]. Beijing:Peking University Press, 1990. (in Chinese)
    [5] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A Materials Science Processing, 1996, 63(2):109-115.
    [6] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1(4):217.
    [7] Linde D V D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, s109-110:1-10.
    [8] Buerle D. Laser Processing and Chemistry[M]. Berlin:Springer, 2000:291-292.
    [9] Shah J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures[M]. Berlin:Springer, 1999.
    [10] Httner B, Rohr G. On the theory of ps and sub-ps laser pulse interaction with metals I. Surface temperature[J]. Applied Surface Science, 1996, 103(3):269-274.
    [11] Downer M C, Shank C V. Ultrafast heating of silicon on sapphire by femtosecond optical pulses[J]. Physical Review Letters, 1986, 56(56):761-764.
    [12] Kaiser A, Rethfeld B, Vicanek M, et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Physical Review B, 2000, 61(17):11437-11450.
    [13] Jiang L, Tsai H L. Prediction of crater shape in femtosecond laser ablation of dielectrics[J]. Journal of Physics D Applied Physics, 2004, 37(10):1492.
    [14] Sugioka K, Cheng Y. Ultrafast Laser Processing:from Micro-to Nanoscale[M]. Singapore:Pan Stanford Pub, 2013.
    [15] Kper S, Stuke M. Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses[J]. Applied Physics Letters, 1989, 54(1):4-6.
    [16] Li Yi. Heat accumulation in high repetition rate femtosecond laser micromachining and its applications[D]. Tianjin:Tianjin University, 2012. (in Chinese)
    [17] Fan C H, Sun J, Longtin J P. Plasma Absorption of Femtosecond Laser Pulses in Dielectrics[J]. Journal of Heat Transfer, 2002, 124(2):275-283.
    [18] Zhang Wentao. Research on the interaction between femtosecond and the silicon nitride crystal film[D]. Xi'an:Northwest University, 2009. (in Chinese)
    [19] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B Condensed Matter, 1996, 53(4):1749.
    [20] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 2006, 100(2):729.
    [21] Russo R E, Mao X L, Liu H C, et al. Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation[J]. Applied Physics A, 1999, 69(1):S887-S894.
    [22] Mao S S, Mao X, Greif R, et al. Initiation of an early-stage plasma during picosecond laser ablation of solids[J]. Applied Physics Letters, 2000, 77(16):2464-2466.
    [23] Dausinger F, Lubatschowski H, Lichtner F. Femtosecond Technology for Technical and Medical Applications[M]. Topics in Applied Physics, 96. Berlin, Heidelberg:Springer, 2004.
    [24] Breitling D, Dausinger F. Fundamental aspects in machining of metals with short and ultrashort laser pulses[C]//SPIE, 2004, 5339:49-63.
    [25] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 2000, 71(6):877-879.
    [26] Stafe M, Marcu A, Puscas N N. Pulsed Laser Ablation of Solids[M]. Berlin:Springer, 2014:758-770.
    [27] Marburger J H, Dawes E. Dynamical formation of a small-scale filament[J]. Physical Review Letters, 1968, 21(8):556-558.
    [28] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2-4):47-189.
    [29] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1):73-75.
    [30] Schaaf P. Laser Processing of Materials:Fundamentals, Applications and Developments[M]. Berlin:Springer, 2010:15-21.
    [31] Courvoisier F, Boutou V, Kasparian J, et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 2003, 83(2):213-215.
    [32] Monot P, Auguste T, Gibbon P, et al. Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma[J]. Physical Review Letters, 1995, 74(15):2953.
    [33] Pukhov A. Strong field interaction of laser radiation[J]. Reports on Progress in Physics, 2003, 65(1):1-55.
    [34] Breitling D, Ruf A, Berger P W, et al. Plasma effects during ablation and drilling using pulsed solid-state lasers[C]//SPIE, 2003, 5121:24-33.
    [35] Golub I. Optical characteristics of supercontinuum generation[J]. Optics Letters, 1990, 15(6):305.
    [36] Nibbering E T, Curley P F, Grillon G, et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics Letters, 1996, 21(1):62.
    [37] Sun J, Longtin J P. Effects of a gas medium on ultrafast laser beam delivery and materials processing[J]. Journal of the Optical Society of America B, 2004, 21(5):1081-1088.
    [38] Kaganov M I, Lifshits I M, Tanatarov L V. Relaxation between electrons and crystalline lattice[J]. Sov Phys JETP, 1957, 4(31):173.
    [39] Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1974, 66(776):776-781.
    [40] Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals[J]. Journal of Heat Transfer, 1993, 115:4(4):835-841.
    [41] Xu Xiaofang. Study on transient reflectivity phenomenon on the surfaceas of metal films induced by femtosecond laser[D]. Zhenjiang:Jiangsu University, 2013. (in Chinese)
    [42] Anisimov S I, Rethfeld B. Theory of ultrashort laser pulse interaction with a metal[C]//SPIE, 1997, 3093:192-203.
    [43] Kotake S, Kuroki M. Molecular dynamics study of solid melting and vaporization by laser irradiation[J]. International Journal of Heat Mass Transfer, 1993, 36(8):2061-2067.
    [44] Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 2005, 127(10):1167.
    [45] Bvillon E, Colombier J P, Recoules V, et al. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals[J]. Applied Surface Science, 2015, 336:79-84.
    [46] Bevillon E, Colombier J P, Dutta B, et al. Ab initio nonequilibrium thermodynamic and transport properties of ultrafast laser irradiated 316L stainless steel[J]. Journal of Physical Chemistry C, 2015, 119:11438-11446.
    [47] Nedialkov N N, Atanasov P A. Molecular dynamics simulation study of deep hole drilling in iron by ultrashort laser pulses[J]. Applied Surface Science, 2006, 252(13):4411-4415.
    [48] Urbassek H M, Rosandi Y. Insight from molecular dynamics simulation into ultrashort-pulse laser ablation[C]//SPIE, 2010, 7842(1):104-104.
    [49] Wang Xinlin. Femtosecond laser ablation of metallic materials and fabrication of micro-components[D]. Wuhan:Huazhong University of Science and Technology, 2007. (in Chinese)
    [50] Rouleau C M, Shih C Y, Wu C, et al. Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films:Time-resolved measurements and molecular dynamics simulations[J]. Applied Physics Letters, 2014, 104(19):312-124.
    [51] Wu C, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Applied Physics A, 2014, 114(1):11-32.
  • [1] 周伟静, 文明, 常浩, 陈一夫, 姬刚, 马英杰, 简智龙, 廖雨杰.  皮秒脉冲激光辐照太阳能电池损伤特性实验研究(特邀) . 红外与激光工程, 2023, 52(2): 20210870-1-20210870-10. doi: 10.3788/IRLA20210870
    [2] 赵毅强, 张琦, 刘长龙, 武唯康, 李尧.  结合物理与几何特性的机载LiDAR数据分类方法 . 红外与激光工程, 2023, 52(11): 20230212-1-20230212-12. doi: 10.3788/IRLA20230212
    [3] 高德辛, 吕昶见, 吕东明, 于旺, 秦伟平.  面向超短脉冲激光器泵浦源的驱动系统设计及应用 . 红外与激光工程, 2022, 51(4): 20210153-1-20210153-10. doi: 10.3788/IRLA20210153
    [4] 高贺岩, 金星, 李兰, 姚猛, 王莹.  能量密度对毫秒脉宽激光烧蚀铝靶物质迁移机制的影响 . 红外与激光工程, 2021, 50(S2): 20210264-1-20210264-6. doi: 10.3788/IRLA20210264
    [5] 岳端木, 孙会来, 杨雪, 孙建林.  飞秒激光环切加工不锈钢微孔工艺及其质量控制神经网络模型 . 红外与激光工程, 2021, 50(10): 20200446-1-20200446-10. doi: 10.3788/IRLA20200446
    [6] 元志安, 王玲, 许可, 邓彬, 刘心溥, 朱家华, 马燕新.  副载波调制脉冲激光雷达水下传输特性研究 . 红外与激光工程, 2020, 49(S2): 20200185-20200185. doi: 10.3788/IRLA20200185
    [7] 陈慧敏, 马超, 齐斌, 郭鹏宇, 杨尚贤, 高丽娟, 霍健.  脉冲激光引信烟雾后向散射特性研究 . 红外与激光工程, 2020, 49(4): 0403005-0403005-7. doi: 10.3788/IRLA202049.0403005
    [8] 黄国俊, 陆益敏, 程勇, 田方涛, 米朝伟, 万强.  脉冲激光沉积法制备红外光学SiC薄膜特性研究 . 红外与激光工程, 2019, 48(7): 742003-0742003(5). doi: 10.3788/IRLA201948.0742003
    [9] 黄亚军, 蔡文莱, 陈英怀, 黄志刚.  纳秒激光诱导铜箔喷射机制的研究 . 红外与激光工程, 2019, 48(2): 206003-0206003(7). doi: 10.3788/IRLA201948.0206003
    [10] 赵万芹, 梅雪松, 王文君.  超短脉冲激光微孔加工(下)——实验探索 . 红外与激光工程, 2019, 48(2): 242001-0242001(12). doi: 10.3788/IRLA201948.0242001
    [11] 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞.  超短脉冲光纤激光相干合成(特邀) . 红外与激光工程, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
    [12] 林正国, 金星, 常浩.  脉冲激光大光斑辐照空间碎片冲量耦合特性研究 . 红外与激光工程, 2018, 47(12): 1243001-1243001(6). doi: 10.3788/IRLA201847.1243001
    [13] 李南, 乔春红, 范承玉, 杨高潮.  大能量长脉冲激光能量计吸收体温度特性 . 红外与激光工程, 2018, 47(4): 406004-0406004(6). doi: 10.3788/IRLA201847.0406004
    [14] 金星, 常浩, 叶继飞.  超短脉冲激光烧蚀冲量耦合测量方法 . 红外与激光工程, 2017, 46(3): 329002-0329002(7). doi: 10.3788/IRLA201746.0329002
    [15] 常浩, 金星, 林正国.  真空环境下脉冲激光烧蚀等离子体羽流特性分析 . 红外与激光工程, 2016, 45(12): 1206014-1206014(6). doi: 10.3788/IRLA201645.1206014
    [16] 冯爱新, 庄绪华, 薛伟, 韩振春, 孙铁囤, 陈风国, 钟国旗, 印成, 何叶.  1 064 nm、532 nm、355 nm波长脉冲激光辐照多晶硅损伤特性研究 . 红外与激光工程, 2015, 44(2): 461-465.
    [17] 单坤玲, 刘新波, 卜令兵, 郜海阳, 黄兴友.  激光雷达和毫米波雷达的卷云微物理特性的联合反演方法 . 红外与激光工程, 2015, 44(9): 2742-2746.
    [18] 田秀芹, 肖思, 陶少华, 袁战忠, 周炎强.  飞秒超短脉冲激光对硅太阳能电池的损伤阈值研究 . 红外与激光工程, 2014, 43(3): 676-680.
    [19] 王维, 郭鹏飞, 杨光, 钦兰云, 卞宏友, 王伟, 任宇航.  超声波对BT20钛合金激光沉积修复作用机制探究 . 红外与激光工程, 2014, 43(8): 2453-2459.
    [20] 邱冬冬, 王睿, 程湘爱, 张震, 江天.  超短脉冲激光对单晶硅太阳能电池的损伤效应 . 红外与激光工程, 2012, 41(1): 112-115.
  • 加载中
计量
  • 文章访问数:  555
  • HTML全文浏览量:  113
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-05
  • 修回日期:  2018-09-03
  • 刊出日期:  2019-01-25

超短脉冲激光微孔加工(上)——理论研究

doi: 10.3788/IRLA201948.0106008
    作者简介:

    赵万芹(1983-),女,讲师,博士,主要从事超短脉冲激光微纳精密制造方面的研究。Email:linazhaolinazhao@foxmail.com

基金项目:

国家重点研发计划(2017YFB1104602);长江学者和创新团队发展计划(IRT_15R54)

  • 中图分类号: TN249

摘要: 自20世纪60年代激光器被发明以来,其脉冲宽度被不断压缩至亚皮秒及飞秒量级,使得激光加工技术进入到了超短脉冲阶段。为了进一步优化超短脉冲激光的微加工,理论研究必不可少。主要论述了超短脉冲激光与不同类型材料之间的相互作用机制。简述了超短脉冲激光微孔加工中的典型物理特性,如等离子体效应、自聚焦和光丝效应及锥形辐射等。分析了超短脉冲激光微孔加工的理论研究现状,并得出了目前理论研究中存在的问题。

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回