留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工微结构太赫兹传感器的研究进展

梁丽 文龙 蒋春萍 陈沁

梁丽, 文龙, 蒋春萍, 陈沁. 人工微结构太赫兹传感器的研究进展[J]. 红外与激光工程, 2019, 48(2): 203001-0203001(17). doi: 10.3788/IRLA201948.0203001
引用本文: 梁丽, 文龙, 蒋春萍, 陈沁. 人工微结构太赫兹传感器的研究进展[J]. 红外与激光工程, 2019, 48(2): 203001-0203001(17). doi: 10.3788/IRLA201948.0203001
Liang Li, Wen Long, Jiang Chunping, Chen Qin. Research progress of terahertz sensor based on artificial microstructure[J]. Infrared and Laser Engineering, 2019, 48(2): 203001-0203001(17). doi: 10.3788/IRLA201948.0203001
Citation: Liang Li, Wen Long, Jiang Chunping, Chen Qin. Research progress of terahertz sensor based on artificial microstructure[J]. Infrared and Laser Engineering, 2019, 48(2): 203001-0203001(17). doi: 10.3788/IRLA201948.0203001

人工微结构太赫兹传感器的研究进展

doi: 10.3788/IRLA201948.0203001
基金项目: 

国家自然科学基金(61574158,11774383,11604367);英国皇家学会牛顿高级学者项目(NA140301);中国科学院国际人才计划项目(2017DT0009);中国科学院科创计划项目

详细信息
    作者简介:

    梁丽(1991-),女,博士生,主要从事微纳光电子器件方面的研究。Email:lliang2017@sinano.ac.cn

  • 中图分类号: TN29

Research progress of terahertz sensor based on artificial microstructure

  • 摘要: 近年来,太赫兹技术得到迅速发展,在通信、反恐、检测和医药等领域展现了广泛的应用潜力。尤其是许多生物分子和材料在太赫兹波段存在特征的吸收光谱,而且太赫兹波能量低损伤小等特点,使得太赫兹生化传感器越来越受到关注。然而,由于太赫兹波的波长较长与生物分子等的尺寸差别非常大,导致相互作用比较弱,从而限制了太赫兹传感器的性能。通过微纳电磁结构对光场空间分布和频率分布的调控,增强太赫兹波传感器的灵敏度是当前的研究热点。文中将重点介绍各种微纳结构太赫兹传感技术的原理和研究现状,并通过梳理其发展趋势和当前的性能制约因素,讨论此方向将来的发展方向和应用前景。
  • [1] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):910-928.
    [2] Yao Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(6):703-707. (in Chinese)
    [3] Menikh A. Terahertz-biosensing Technology:Progress, Limitations, and Future Outlook[M]. Berlin:Springer, 2010:283-295.
    [4] Chen T, Li S, Sun H. Metamaterials application in sensing[J]. Sensors (Basel), 2012, 12(3):2742-2765.
    [5] Yan Xin, Zhang Xingfang, Liang Lanju, et al. Research progress in the application of biosensors by using metamaterial in terahertz wave[J]. Spectroscopy and Spectral Analysis, 2014, 34(9):2365-2372. (in Chinese)
    [6] Nagel M, Richter F, Haring-Bolivar P, et al. A functionalized THz sensor for marker-free DNA analysis[J]. Physics in Medicine Biology, 2003, 48(22):3625.
    [7] Al-Douseri F M, Chen Y, Zhang X C. THz wave sensing for petroleum industrial applications[J]. International Journal of Infrared and Millimeter Waves, 2006, 27(4):481-503.
    [8] O'Hara J F, Withayachumnankul W, Al-Naib I. A review on thin-film sensing with terahertz waves[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(3):245-291.
    [9] Luther J M, Jain P K, Ewers T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots[J]. Nature Materials, 2011, 10(5):361.
    [10] Kim J B, Lee J H, Moon C K, et al. Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes[J]. Advanced Materials, 2013, 25(26):3571-3577.
    [11] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11):6779.
    [12] Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 2016, 4(4):541-547.
    [13] Qu Y, Li Q, Gong H, et al. Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films[J]. Advanced Optical Materials, 2016, 4(3):480-486.
    [14] Nicholls L H, Rodrguez-Fortuno F J, Nasir M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J]. Nature Photonics, 2017, 11(10):628.
    [15] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 2016, 17(1):407-413.
    [16] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9):5319-5325.
    [17] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of230 phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5):3027-3034.
    [18] Lee D E, Lee Y J, Shin E, et al. Mach-zehnder interferometer refractive index sensor based on a plasmonic channel waveguide[J]. Sensors, 2017, 17(11):2584.
    [19] Chu C S, Lin K Z, Tang Y H. A new optical sensor for sensing oxygen based on phase shift detection[J]. Sensors and Actuators B:Chemical, 2016, 223:606-612.
    [20] York T, Powell S B, Gao S, et al. Bioinspired polarization imaging sensors:from circuits and optics to signal processing algorithms and biomedical applications[J]. Proceedings of the IEEE, 2014, 102(10):1450-1469.
    [21] Maier S A, Andrews S R, Martin-Moreno L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006, 97(17):176805.
    [22] Joy S R, Erementchouk M, Mazumder P. Spoof surface plasmon resonant tunneling mode with high quality and Purcell factors[J]. Physical Review B, 2017, 95(7):075435.
    [23] Garcia-Vidal F J, Martin-Moreno L, Pendry J B. Surfaces with holes in them:new plasmonic metamaterials[J]. Journal of Optics A:Pure and Applied Optics, 2005, 7(2):S97.
    [24] Kats M A, Woolf D, Blanchard R, et al. Spoof plasmon analogue of metal-insulator-metal waveguides[J]. Optics Express, 2011, 19(16):14860-14870.
    [25] Drexler C, Shishkanova T V, Lange C, et al. Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers:a feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer[J]. Microchimica Acta, 2014, 181(15-16):1857-1862.
    [26] Liu C, Liu P, Yang C, et al. Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications[J]. Journal of Optics, 2017, 19(11):115102.
    [27] Okamoto K, Tsuruda K, Diebold S, et al. Terahertz sensor using photonic crystal cavity and resonant tunneling diodes[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(9):1085-1097.
    [28] Benz A, Deutsch C, Brandstetter M, et al. Terahertz active photonic crystals for condensed gas sensing[J]. Sensors, 2011, 11(6):6003-6014.
    [29] Astley V, Reichel K S, Jones J, et al. Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities[J]. Applied Physics Letters, 2012, 100(23):231108.
    [30] Islam M, Chowdhury D R, Ahmad A, et al. Terahertz plasmonic waveguide based thin film sensor[J]. Journal of Lightwave Technology, 2017, 35(23):5215-5221.
    [31] Rich R L, Myszka D G. Advances in surface plasmon resonance biosensor analysis[J]. Current Opinion in Biotechnology, 2000, 11(1):54-61.
    [32] Haes A J, Van Duyne R P. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(35):10596-10604.
    [33] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes[J]. Nano Letters, 2016, 16(2):1502-1508.
    [34] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424:824.
    [35] Im H, Shao H, Park Y I, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor[J]. Nature Biotechnology, 2014, 32(5):490.
    [36] Baaske M D, Foreman M R, Vollmer F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform[J]. Nat Nanotechnol, 2014, 9(11):933-942.
    [37] Li Y C, Chang Y F, Su L C, et al. Differential-phase surface plasmon resonance biosensor[J]. Analytical Chemistry, 2008, 80(14):5590-5595.
    [38] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685):847-855.
    [39] Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722):670-672.
    [40] Yu N, Wang Q J, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9):730-735.
    [41] Brongersma M L, Kik P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer, 2007.
    [42] Ng B, Wu J, Hanham S M, et al. Spoof plasmon surfaces:a novel platform for THz sensing[J]. Advanced Optical Materials, 2013, 1(8):543-548.
    [43] Huang W P. Coupled-mode theory for optical waveguides:an overview[J]. JOSA A, 1994, 11(3):963-983.
    [44] Liu G, He M, Tian Z, et al. Terahertz surface plasmon sensor for distinguishing gasolines[J]. Applied Optics, 2013, 52(23):5695-5700.
    [45] Chen Q, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Optics Express, 2010, 18(13):14056-14062.
    [46] Schrter U, Heitmann D. Surface-plasmon-enhanced transmission through metallic gratings[J]. Physical Review B, 1998, 58(23):15419-15421.
    [47] Ng B, Hanham S M, Wu J, et al. Broadband terahertz sensing on spoof plasmon surfaces[J]. ACS Photonics, 2014, 1(10):1059-1067.
    [48] Sihvola A. Metamaterials in electromagnetics[J]. Metamaterials, 2007, 1(1):2-11.
    [49] Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6):063908.
    [50] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792.
    [51] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700):1351-1353.
    [52] Zhang F, Zhao Q, Kang L, et al. Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial[J]. Physical Review B, 2009, 80(19):195119.
    [53] Cong L, Manjappa M, Xu N, et al. Fano resonances in terahertz metasurfaces:a figure of merit optimization[J]. Advanced Optical Materials, 2015, 3(11):1537-1543.
    [54] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths:diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194.
    [55] Zheng G, Mhlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308.
    [56] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2):829-834.
    [57] Driscoll T, Andreev G O, Basov D N, et al. Tuned permeability in terahertz split-ring resonators for devices and sensors[J]. Applied Physics Letters, 2007, 91(6):062511.
    [58] Chiam S Y, Singh R, Gu J, et al. Increased frequency shifts in high aspect ratio terahertz split ring resonators[J]. Applied Physics Letters, 2009, 94(6):064102.
    [59] Cubukcu E, Zhang S, Park Y S, et al. Split ring resonator sensors for infrared detection of single molecular monolayers[J]. Applied Physics Letters, 2009, 95(4):043113.
    [60] Wang B X, Wang G Z, Sang T. Simple design of novel triple-band terahertz metamaterial absorber for sensing application[J]. Journal of Physics D:Applied Physics, 2016. 49(16):165307.
    [61] Hu X, Xu G, Wen L, et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser Photonics Reviews, 2016, 10(6):962-969.
    [62] Singh R, Al-Naib I A I, Koch M, et al. Asymmetric planar terahertz metamaterials[J]. Optics Express, 2010, 18(12):13044-13050.
    [63] Wu X, Quan B, Pan X, et al. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor[J]. Biosensors and Bioelectronics, 2013, 42:626-631.
    [64] Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Applied Physics Letters, 2007, 91(18):184102.
    [65] Singh R, Cao W, Al-Naib I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17):171101.
    [66] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Applied Physics Letters, 2010, 97(19):191906.
    [67] Tao H, Strikwerda A C, Liu M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 2010, 97(26):261909.
    [68] Srivastava Y K, Cong L, Singh R. Dual-surface flexible THz Fano metasensor[J]. Applied Physics Letters, 2017, 111(20):201101.
    [69] Wu P C, Sun G, Chen W T, et al. Vertical split-ring resonator based nanoplasmonic sensor[J]. Applied Physics Letters, 2014, 105(3):033105.
    [70] Liu Z, Liu Z, Li J, et al. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials[J]. Scientific Reports, 2016, 6:27817.
    [71] Cheng Y, Mao X S, Wu C, et al. Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing[J]. Optical Materials, 2016, 53:195-200.
    [72] Wang W, Yan F, Tan S, et al. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators[J]. Photonics Research, 2017, 5(6):571-577.
    [73] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402.
    [74] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7):2342-2348.
    [75] Cattoni A, Ghenuche P, Haghiri-Gosnet A M, et al. 3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography[J]. Nano Letters, 2011, 11(9):3557-3563.
    [76] Cong L, Tan S, Yahiaoui R, et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers:a comparison with the metasurfaces[J]. Applied Physics Letters, 2015, 106(3):031107.
    [77] Sun Y, Xia X, Feng H, et al. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers[J]. Applied Physics Letters, 2008, 92(22):221101.
    [78] O'Hara J F, Singh R, Brener I, et al. Thin-film sensing with planar terahertz metamaterials:sensitivity and limitations[J]. Optics Express, 2008, 16(3):1786-1795.
    [79] Wang B X, Zhai X, Wang G Z, et al. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics, 2015, 117(1):014504.
    [80] Yahiaoui R, Tan S, Cong L, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber[J]. Journal of Applied Physics, 2015, 118(8):083103.
    [81] Yang D, Tian H, Ji Y. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing[J]. Applied Optics, 2015, 54(1):1-5.
    [82] Fan F, Gu W H, Wang X H, et al. Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array[J]. Applied Physics Letters, 2013, 102(12):121113.
    [83] Hanham S M, Watts C, Otter W J, et al. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies[J]. Applied Physics Letters, 2015, 107(3):032903.
    [84] Li X, Song J, Zhang J X J. Design of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub[J]. Optics Communications, 2016, 361:130-137.
    [85] Zhang Y, Li T, Zeng B, et al. A graphene based tunable terahertz sensor with double Fano resonances[J]. Nanoscale, 2015, 7(29):12682-12688.
    [86] He X, Zhang Q, Lu G, et al. Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials[J]. Rsc Advances, 2016, 6(57):52212-52218.
    [87] Chen X, Fan W, Song C. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing[J]. Carbon, 2018. 133:416-422.
    [88] 李向军. 基于太赫兹时域谱技术的有机分子溶液检测与分析研究[D]. 杭州:浙江大学, 2011.
    [89] Bui T S, Dao T D, Dang L H, et al. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules[J]. Scientific Reports, 2016, 6:32123.
  • [1] 苏英蔚, 田震.  基于相位梯度光栅介电超表面的高效太赫兹波异常反射器 . 红外与激光工程, 2023, 52(2): 20220304-1-20220304-7. doi: 10.3788/IRLA20220304
    [2] 王子群, 李振华, 胡晓飞, 许亮, 王娅茹, 王猛, 李院平, 姚海云, 闫昕, 梁兰菊.  石墨烯复合超材料多维超灵敏谷氨酸传感器 . 红外与激光工程, 2023, 52(9): 20230045-1-20230045-8. doi: 10.3788/IRLA20230045
    [3] 吴毅萍, 陈晟皓, 刘仕龙, 古诗怡, 徐金金, 姜去寒, 庄松林, 陈麟.  太赫兹双磁矩环偶极子传感芯片及其在原油检测中的应用 . 红外与激光工程, 2022, 51(6): 20210338-1-20210338-8. doi: 10.3788/IRLA20210338
    [4] 孟宪睿, 张铭, 席宇鹏, 王如志, 王长昊, 王波.  复合石墨烯/硅半球的宽带太赫兹超材料吸收器 . 红外与激光工程, 2022, 51(6): 20210648-1-20210648-7. doi: 10.3788/IRLA20210648
    [5] 崔慧源, 陈雨璐, 王晓东.  可用于多波段融合的超结构/阻挡杂质带复合结构探测器(特邀) . 红外与激光工程, 2021, 50(1): 20211012-1-20211012-13. doi: 10.3788/IRLA20211012
    [6] 李泉, 刘姗姗, 路光达, 王爽.  利用石墨烯-金属复合结构实现太赫兹电磁诱导透明超表面主动调控 . 红外与激光工程, 2021, 50(8): 20210246-1-20210246-6. doi: 10.3788/IRLA20210246
    [7] 杜佳远, 赵锌宇, 胡新华.  人工微结构薄层红外探测器的研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211002-1-20211002-8. doi: 10.3788/IRLA20211002
    [8] 王晶, 田浩.  基于双重共振响应的太赫兹柔性可拉伸超表面(特邀) . 红外与激光工程, 2020, 49(12): 20201059-1-20201059-6. doi: 10.3788/IRLA20201059
    [9] 贺敬文, 董涛, 张岩.  太赫兹波前调制超表面器件研究进展 . 红外与激光工程, 2020, 49(9): 20201033-1-20201033-11. doi: 10.3788/IRLA20201033
    [10] 张岩, 李春, 卞博锐, 张文, 蒋玲.  新型太赫兹波束分离器的设计 . 红外与激光工程, 2020, 49(5): 20190290-20190290-7. doi: 10.3788/IRLA20190290
    [11] 朱久泰, 郭万龙, 刘锋, 王林, 陈效双.  基于光热载流子调控的二维材料红外与太赫兹探测器研究进展 . 红外与激光工程, 2020, 49(1): 0103001-0103001(10. doi: 10.3788/IRLA202049.0103001
    [12] 夏祖学, 刘发林, 邓琥, 陈俊学, 刘泉澄.  频率可调太赫兹微结构光电导天线 . 红外与激光工程, 2018, 47(5): 520002-0520002(7). doi: 10.3788/IRLA201847.0520002
    [13] 孙玉洁, 段俊萍, 王雄师, 张斌珍.  多孔耦合型太赫兹波导定向耦合器的设计 . 红外与激光工程, 2017, 46(1): 125002-0125002(7). doi: 10.3788/IRLA201746.0125002
    [14] 郑伟, 范飞, 陈猛, 白晋军, 常胜江.  基于太赫兹超材料的微流体折射率传感器 . 红外与激光工程, 2017, 46(4): 420003-0420003(6). doi: 10.3788/IRLA201746.0420003
    [15] 侯宇, 杨会静.  垂直双空芯宽带太赫兹偏振分离器 . 红外与激光工程, 2016, 45(12): 1225005-1225005(5). doi: 10.3788/IRLA201645.1225005
    [16] 张学迁, 张慧芳, 田震, 谷建强, 欧阳春梅, 路鑫超, 韩家广, 张伟力.  利用介质超材料控制太赫兹波的振幅和相位 . 红外与激光工程, 2016, 45(4): 425004-0425004(6). doi: 10.3788/IRLA201645.0425004
    [17] 李依涵, 张米乐, 崔海林, 何敬锁, 张存林.  金属开口谐振环结构的太赫兹波吸收特性 . 红外与激光工程, 2016, 45(12): 1225002-1225002(6). doi: 10.3788/IRLA201645.1225002
    [18] 童劲超, 黄敬国, 黄志明.  基于铟镓砷材料的新型太赫兹/亚毫米波探测器研究 . 红外与激光工程, 2014, 43(10): 3347-3351.
    [19] 罗俊, 公金辉, 张新宇, 季安, 谢长生, 张天序.  基于超材料的连续太赫兹波透射特性研究 . 红外与激光工程, 2013, 42(7): 1743-1747.
    [20] 李乾坤, 李德华, 周薇, 马建军, 鞠智鹏, 屈操.  单缝双环结构超材料太赫兹波调制器 . 红外与激光工程, 2013, 42(6): 1553-1556.
  • 加载中
计量
  • 文章访问数:  720
  • HTML全文浏览量:  124
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 修回日期:  2018-10-03
  • 刊出日期:  2019-02-25

人工微结构太赫兹传感器的研究进展

doi: 10.3788/IRLA201948.0203001
    作者简介:

    梁丽(1991-),女,博士生,主要从事微纳光电子器件方面的研究。Email:lliang2017@sinano.ac.cn

基金项目:

国家自然科学基金(61574158,11774383,11604367);英国皇家学会牛顿高级学者项目(NA140301);中国科学院国际人才计划项目(2017DT0009);中国科学院科创计划项目

  • 中图分类号: TN29

摘要: 近年来,太赫兹技术得到迅速发展,在通信、反恐、检测和医药等领域展现了广泛的应用潜力。尤其是许多生物分子和材料在太赫兹波段存在特征的吸收光谱,而且太赫兹波能量低损伤小等特点,使得太赫兹生化传感器越来越受到关注。然而,由于太赫兹波的波长较长与生物分子等的尺寸差别非常大,导致相互作用比较弱,从而限制了太赫兹传感器的性能。通过微纳电磁结构对光场空间分布和频率分布的调控,增强太赫兹波传感器的灵敏度是当前的研究热点。文中将重点介绍各种微纳结构太赫兹传感技术的原理和研究现状,并通过梳理其发展趋势和当前的性能制约因素,讨论此方向将来的发展方向和应用前景。

English Abstract

参考文献 (89)

目录

    /

    返回文章
    返回