留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元增强金硅肖特基结近红外光电探测器进展

王琦龙 李裕培 翟雨生 计吉焘 邹海洋 陈广甸

王琦龙, 李裕培, 翟雨生, 计吉焘, 邹海洋, 陈广甸. 等离激元增强金硅肖特基结近红外光电探测器进展[J]. 红外与激光工程, 2019, 48(2): 203002-0203002(14). doi: 10.3788/IRLA201948.0203002
引用本文: 王琦龙, 李裕培, 翟雨生, 计吉焘, 邹海洋, 陈广甸. 等离激元增强金硅肖特基结近红外光电探测器进展[J]. 红外与激光工程, 2019, 48(2): 203002-0203002(14). doi: 10.3788/IRLA201948.0203002
Wang Qilong, Li Yupei, Zhai Yusheng, Ji Jitao, Zou Haiyang, Chen Guangdian. Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction[J]. Infrared and Laser Engineering, 2019, 48(2): 203002-0203002(14). doi: 10.3788/IRLA201948.0203002
Citation: Wang Qilong, Li Yupei, Zhai Yusheng, Ji Jitao, Zou Haiyang, Chen Guangdian. Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction[J]. Infrared and Laser Engineering, 2019, 48(2): 203002-0203002(14). doi: 10.3788/IRLA201948.0203002

等离激元增强金硅肖特基结近红外光电探测器进展

doi: 10.3788/IRLA201948.0203002
基金项目: 

NSAF联合基金(U1730113);江苏省自然科学基金(BK20171365);111计划(B07027);中央高校基本科研业务费专项资金;江苏省研究生科研与实践创新计划(SJCX17_0020)

详细信息
    作者简介:

    王琦龙(1976-),男,教授,博士生导师,博士,主要从事微纳电子器件、光电系统设计与工程、真空光电器件方面的研究。Email:northrockwql@seu.edu.cn

  • 中图分类号: TN21

Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction

  • 摘要: 表面等离激元共振衰减诱导热电子,因其能量高、分布窄、打破半导体禁带宽度限制等特点被广泛应用于拓展半导体光电转换的响应光谱,如拓展宽禁带半导体的响应光谱至可见光波段,拓展硅的响应波段至近红外。此外,还可以通过调节表面等离激元结构调控响应光谱和实现偏振探测,在实现硅基近红外光电探测领域具有重要的应用价值。从表面等离激元以及表面等离激元内光电效应的机理出发,综述了表面等离激元热电子原理在实现硅基近红外光电探测方面的研究进展,并总结了表面等离激元结构的形貌,尺寸、分布等因素对热电子的产生(外量子效率)和注入效率(内量子效率)的影响。最后展望了基于表面等离激元结构的硅基肖特基结近红外光电探测的研究方向。
  • [1] Li C, Bando Y, Liao M, et al. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire[J]. Applied Physics Letters, 2010, 97(16):161102.
    [2] Downs C, Vandervelde T E. Progress in infrared photodetectors since 2000[J]. Sensors, 2013, 13(4):5054-5098.
    [3] Wu P, Dai Y, Ye Y, et al. Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires[J]. Journal of Materials Chemistry, 2011, 21(8):2563-2567.
    [4] Hansen M P, Malchow D S. Overview of SWIR detectors, cameras, and applications[C]//Thermosense Xxx. International Society for Optics and Photonics, 2008, 6939:69390I.
    [5] Osborne B G, Fearn T, Hindle P H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis[M]. Berlin:Longman Scientific and Technical, 1993.
    [6] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 2002, 415(6872):617.
    [7] Jie J, Zhang W, Peng K, et al. Surface-dominated transport properties of silicon nanowires[J]. Advanced Functional Materials, 2008, 18(20):3251-3257.
    [8] Zheng Daqing, Chen Weimin, Chen Li, et al. A laser ranging method with high precision and large range in high speed based on phase measurement[J]. Journal of OptoelectronicsLaser, 2015, 26(2):303-308. (in Chinese)郑大青, 陈伟民, 陈丽, 等. 一种基于相位测量的快速高精度大范围的激光测距法[J]. 光电子激光, 2015, 26(2):303-308.
    [9] Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1):109-121.
    [10] Wu Guoan, Luo Linbao. Development and application of near infrared photodetectors[J]. Physics, 2018, 47(3):137-142. (in Chinese)吴国安, 罗林保. 近红外光电探测器的发展与应用[J]. 物理, 2018, 47(3):137-142.
    [11] Beling A, Campbell J C. InP-based high-speed photodetectors[J]. Journal of Lightwave Technology, 2009, 27(3):343-355.
    [12] Kang Y, Mages P, Clawson A, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances[J]. IEEE Photonics Technology Letters, 2002, 14(11):1593-1595.
    [13] Koester S J, Schaub J D, Dehlinger G, et al. Germanium-on-SOI infrared detectors for integrated photonic applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6):1489-1502.
    [14] Harame D, Koester S, Freeman G, et al. The revolution in SiGe:impact on device electronics[J]. Applied Surface Science, 2004, 224(1):9-17.
    [15] Eng P C, Song S, Ping B. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength[J]. Nanophotonics, 2015, 4(3):277-302.
    [16] Jones R, Park H D, Fang A W, et al. Hybrid silicon integration[J]. Journal of Materials Science:Materials in Electronics, 2009, 20(1):3-9.
    [17] Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8):527.
    [18] Kang Y, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 2009, 3(1):59.
    [19] Vivien L, Osmond J, Fdli J-M, et al. 42 GHz p.i.n Germanium photodetector integrated in a silicon-oninsulator waveguide[J]. Opt Express, 2008, 17:6252-6257.
    [20] Wang J, Lee S. Ge-photodetectors for Si-based optoelectronic integration[J]. Sensors, 2011, 11(1):696-718.
    [21] Alloatti L, Srinivasan S A, Orcutt J S, et al. Waveguide-coupled detector in zero-change complementary metal-oxide-semiconductor[J]. Applied Physics Letters, 2015, 107(4):041104.
    [22] Meng H, Atabaki A, Orcutt J S, et al. Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength[J]. Opt Express, 2015, 23:32643-32653.
    [23] Mailoa J P, Akey A J, Simmons C B, et al. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon[J]. Nature Communications, 2014, 5:3011.
    [24] Casalino M, Coppola G, Iodice M, et al. Near-infrared sub-bandgap all-silicon photodetectors:state of the art and perspectives[J]. Sensors, 2010, 10(12):10571-10600.
    [25] Kimata M, Ozeki T, Tsubouchi N, et al. PtSi Schottky-barrier infared focal plane arrays[C]//Imaging System Technology for Remote Sensing. International Society for Optics and Photonics, 1998, 3505:2-13.
    [26] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030):702-704.
    [27] Maier S A. Plasmonics:Fundamentals and Applications[M]. Berlin:Springer Science Business Media, 2007.
    [28] Brongersma M L, Kik P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer, 2007.
    [29] Wang Zhenlin. A review on research progress in surface plasmons[J]. Progress in Physics, 2009, 29(3):287-324.(in Chinese)王振林. 表面等离激元研究新进展[J]. 物理学进展, 2009, 29(3):287-324.
    [30] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nature Photonics, 2014, 8(2):95-103.
    [31] Neumann O, Urban A S, Day J, et al. Solar vapor generation enabled by nanoparticles[J]. Acs Nano, 2013, 7(1):42-49.
    [32] Hogan N J, Urban A S, Ayala-Orozco C, et al. Nanoparticles heat through light localization[J]. Nano Letters, 2014, 14(8):4640-4645.
    [33] Sze S M, Ng K K. Physics of Semiconductor Devices[M]. New Jersey:John Wiley Sons, 2006.
    [34] Zhang C, Wu K, Zhan Y, et al. Planar microcavity-integrated hot-electron photodetector[J]. Nanoscale, 2016, 8(19):10323-10329.
    [35] Zhan Y, Wu K, Zhang C, et al. Infrared hot-carrier photodetection based on planar perfect absorber[J]. Optics Letters, 2015, 40(18):4261-4264.
    [36] Sze S M, Moll J L, Sugano T. Range-energy relation of hot electrons in gold[J]. Solid-State Electronics, 1964, 7(7):509-523.
    [37] White T P, Catchpole K R. Plasmon-enhanced internal photoemission for photovoltaics:theoretical efficiency limits[J]. Applied Physics Letters, 2012, 101(7):073905.
    [38] Donati S. Photodetectors[M]. New Jersey:Prentice Hall PTR, 1999.
    [39] Kan T, Ajiki Y, Matsumoto K, et al. Si process compatible near-infrared photodetector using Au/Si nano-pillar array[C]//Micro Electro Mechanical Systems (MEMS), 2016 IEEE 29th International Conference on. IEEE, 2016:624-627.
    [40] Ajiki Y, Kan T, Yahiro M, et al. Near infrared photo-detector using self-assembled formation of organic crystalline nanopillar arrays[C]//Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on. IEEE, 2014:147-150.
    [41] Ajiki Y, Kan T, Yahiro M, et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars[J]. Applied Physics Letters, 2016, 108(15):151102.
    [42] Schider G, Krenn J R, Hohenau A, et al. Plasmon dispersion relation of Au and Ag nanowires[J]. Physical Review B, 2003, 68(15):155427.
    [43] Ajiki Y, Kan T, Yahiro M, et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars[J]. Applied Physics Letters, 2016, 108(15):151102.
    [44] Yang Z, Liu M, Liang S, et al. Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection[J]. Optics Express, 2017, 25(17):20268-20273.
    [45] Knight M W, Wang Y, Urban A S, et al. Embedding plasmonic nanostructure diodes enhances hot electron emission[J]. Nano Letters, 2013, 13(4):1687-1692.
    [46] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 2014, 14(6):3510-3514.
    [47] Desiatov B, Goykhman I, Mazurski N, et al. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime[J]. Optica, 2015, 2(4):335-338.
    [48] Wen L, Chen Y, Liang L, et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanoco-mposites[J]. ACS Photonics, 2017, 5(2):581-591.
    [49] Wen L, Chen Y, Liu W, et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky junction[J]. Laser Photonics Reviews, 2017, 11(4):1700059.
    [50] Qi Z, Zhai Y, Wen L, et al. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection[J]. Nanotechnology, 2017, 28(27):275202.
    [51] Goykhman I, Desiatov B, Khurgin J, et al. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band[J]. Optics Express, 2012, 20(27):28594-28602.
    [52] Goykhman I, Desiatov B, Khurgin J, et al. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime[J]. Nano Letters, 2011, 11(6):2219-2224.
    [53] Muehlbrandt S, Melikyan A, Harter T, et al. Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception[J]. Optica, 2016, 3(7):741-747.
    [54] Sobhani A, Knight M W, Wang Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 2013, 4:1643.
    [55] Qin L, Zhang C, Li R, et al. Silicon-gold core-shell nanowire array for an optically and electrically characterized refractive index sensor based on plasmonic resonance and Schottky junction[J]. Optics Letters, 2017, 42(7):1225-1228.
    [56] Phillips K S. Jir Homola (Ed.):Surface plasmon resonance-based sensors[J]. Analytical and Bioanalytical Chemistry, 2008, 390(5):1221-1222.
    [57] Tetz K A, Pang L, Fainman Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance[J]. Optics Letters, 2006, 31(10):1528-1530.
    [58] Porto J, Garcia-Vidal F, Pendry J. Transmission resonances on metallic gratings with very narrow slits[J]. Physical Review Letters, 1999, 83(14):2845.
    [59] Gordon R, Brolo A, Mckinnon A, et al. Strong polarization in the optical transmission through elliptical nanohole arrays[J]. Physical Review Letters, 2004, 92(3):037401.
    [60] Li W, Coppens Z J, Besteiro L V, et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Communications, 2015, 6:8379.
    [61] Chalabi H, Schoen D Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna[J]. Nano Lett, 2014, 14:1374-1380.
    [62] Afshinmanesh F, White J S, Cai W, et al. Measurement of the polarization state of light using an integrated plasmonic polarimeter[J]. Nanophotonics, 2012, 1(2):125-129.
    [63] Wu C Y, Pan Z Q, Wang Y Y, et al. Core-shell silicon nanowire array-Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector[J]. Journal of Materials Chemistry C, 2016, 4(46):10804-10811.
    [64] Alavirad M, Olivieri A, Roy L, et al. High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors[J]. Optics Express, 2016, 24(20):22544-22554.
    [65] Lin K T, Chen H L, Lai Y S, et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths[J]. Nature Communications, 2014, 5:3288.
    [66] Casalino M, Iodice M, Sirleto L, et al. Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm[J]. Journal of Applied Physics, 2013, 114(15):153103.
  • [1] 郭思彤, 邱开放, 王文艳, 李国辉, 翟爱平, 潘登, 冀婷, 崔艳霞.  Au/TiO2复合纳米结构增强热电子光电探测器宽谱响应性能 . 红外与激光工程, 2023, 52(3): 20220464-1-20220464-11. doi: 10.3788/IRLA20220464
    [2] 董亚魁, 刘俊良, 孙林山, 李永富, 范书振, 高亮, 刘兆军, 赵显.  基于InGaAs NFAD的集成型低噪声近红外单光子探测器(特邀) . 红外与激光工程, 2023, 52(3): 20220907-1-20220907-8. doi: 10.3788/IRLA20220907
    [3] 史屹君, 武鸿涛, 刘文皓, 苏子博, 刘洋.  近红外光谱吸收技术的无线电子鼻设计 . 红外与激光工程, 2022, 51(5): 20210374-1-20210374-6. doi: 10.3788/IRLA20210374
    [4] 吕沛桐, 宋凯文, 孙铭阳, 王浩然, 陈晨, 张天瑜.  近红外波长扫描激光高精度FBG解调系统 . 红外与激光工程, 2022, 51(4): 20210230-1-20210230-7. doi: 10.3788/IRLA20210230
    [5] 张畅达, 高明友, 周岩, 邓晓洲, 熊欣, 刘风雷, 张为国.  硅基非球面柱面微透镜阵列制备方法 . 红外与激光工程, 2022, 51(7): 20210688-1-20210688-9. doi: 10.3788/IRLA20210688
    [6] 刘畅, 王健, 左璇, 熊大元.  局域光场增强的量子阱红外探测器(特邀) . 红外与激光工程, 2021, 50(1): 20211009-1-20211009-12. doi: 10.3788/IRLA20211009
    [7] 何伟迪, 苏丹, 王善江, 周桓立, 陈雯, 张晓阳, 赵宁, 张彤.  表面等离激元纳米结构增效的光电探测器进展(特邀) . 红外与激光工程, 2021, 50(1): 20211014-1-20211014-12. doi: 10.3788/IRLA20211014
    [8] 魏杨, 王绪泉, 魏永畅, 刘煦, 黄张成, 黄松垒, 方家熊.  微型近红外物联网节点的传感器输出数字化应用研究 . 红外与激光工程, 2019, 48(9): 904002-0904002(6). doi: 10.3788/IRLA201948.0904002
    [9] 申远, 于磊, 陈素娟, 沈威, 陈结祥, 薛辉.  高分辨率近红外成像光谱仪光学系统 . 红外与激光工程, 2019, 48(8): 814005-0814005(7). doi: 10.3788/IRLA201948.0814005
    [10] 李国林, 刘文雅, 季文海.  应用于天然气的近红外CO气体分析系统的实验研究 . 红外与激光工程, 2019, 48(S1): 114-119. doi: 10.3788/IRLA201948.S117007
    [11] 武魁军, 何微微, 于光保, 熊远辉, 李发泉.  分子滤光红外成像技术及其在光电探测中的应用(特邀) . 红外与激光工程, 2019, 48(4): 402003-0402003(9). doi: 10.3788/IRLA201948.0402003
    [12] 李博, 徐晓婷, 郑雪晴.  脂肪测量的近红外光谱研究 . 红外与激光工程, 2018, 47(S1): 50-54. doi: 10.3788/IRLA201847.S104003
    [13] 李志全, 刘同磊, 白兰迪, 谢锐杰, 岳中, 冯丹丹, 顾而丹.  纳米光栅的表面等离激元增强型GaN-LED . 红外与激光工程, 2018, 47(9): 920005-0920005(8). doi: 10.3788/IRLA201847.0920005
    [14] 朱振东, 白本锋, 谭峭峰, 李群庆, 王雪深, 高思田.  叠层圆柱台表面等离激元器件的共振特性 . 红外与激光工程, 2017, 46(9): 934001-0934001(6). doi: 10.3788/IRLA201746.0934001
    [15] 李修, 徐艳芳, 辛智青, 李亚玲, 李路海.  表面等离子体共振增强ZnO/Ag薄膜发光特性研究 . 红外与激光工程, 2016, 45(6): 621005-0621005(4). doi: 10.3788/IRLA201645.0621005
    [16] 郑权, 韩志刚, 陈磊.  近红外谱域显微干涉仪的位移传感特性研究 . 红外与激光工程, 2016, 45(10): 1017002-1017002(7). doi: 10.3788/IRLA201645.1017002
    [17] 朱梦均, 张大伟, 陈建农.  宽带近红外表面等离激元逻辑与门器件的设计 . 红外与激光工程, 2016, 45(3): 320003-0320003(5). doi: 10.3788/IRLA201645.0320003
    [18] 闫佩佩, 李刚, 刘凯, 姜凯, 段晶, 单秋莎.  不同结构地基光电探测系统的杂散光抑制 . 红外与激光工程, 2015, 44(3): 917-922.
    [19] 黄振, 蒋远大, 孙志斌, 郑福, 王超, 翟光杰.  近红外单光子读取电路 . 红外与激光工程, 2014, 43(2): 464-468.
    [20] 韩艳丽, 王铎, 张健, 樊利恒, 孙腾飞.  近红外多视场白天测星分析 . 红外与激光工程, 2013, 42(8): 2202-2208.
  • 加载中
计量
  • 文章访问数:  836
  • HTML全文浏览量:  166
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-05
  • 修回日期:  2018-10-12
  • 刊出日期:  2019-02-25

等离激元增强金硅肖特基结近红外光电探测器进展

doi: 10.3788/IRLA201948.0203002
    作者简介:

    王琦龙(1976-),男,教授,博士生导师,博士,主要从事微纳电子器件、光电系统设计与工程、真空光电器件方面的研究。Email:northrockwql@seu.edu.cn

基金项目:

NSAF联合基金(U1730113);江苏省自然科学基金(BK20171365);111计划(B07027);中央高校基本科研业务费专项资金;江苏省研究生科研与实践创新计划(SJCX17_0020)

  • 中图分类号: TN21

摘要: 表面等离激元共振衰减诱导热电子,因其能量高、分布窄、打破半导体禁带宽度限制等特点被广泛应用于拓展半导体光电转换的响应光谱,如拓展宽禁带半导体的响应光谱至可见光波段,拓展硅的响应波段至近红外。此外,还可以通过调节表面等离激元结构调控响应光谱和实现偏振探测,在实现硅基近红外光电探测领域具有重要的应用价值。从表面等离激元以及表面等离激元内光电效应的机理出发,综述了表面等离激元热电子原理在实现硅基近红外光电探测方面的研究进展,并总结了表面等离激元结构的形貌,尺寸、分布等因素对热电子的产生(外量子效率)和注入效率(内量子效率)的影响。最后展望了基于表面等离激元结构的硅基肖特基结近红外光电探测的研究方向。

English Abstract

参考文献 (66)

目录

    /

    返回文章
    返回