徐思宇, 张兆健, 何新, 韩云鑫, 张晶晶, 黄杰, 陈丁博, 杨俊波. 基于金属-绝缘体-金属波导耦合纳米腔的等离子体三波分复用结构[J]. 红外与激光工程, 2019, 48(2): 221001-0221001(7). DOI: 10.3788/IRLA201948.0221001
引用本文: 徐思宇, 张兆健, 何新, 韩云鑫, 张晶晶, 黄杰, 陈丁博, 杨俊波. 基于金属-绝缘体-金属波导耦合纳米腔的等离子体三波分复用结构[J]. 红外与激光工程, 2019, 48(2): 221001-0221001(7). DOI: 10.3788/IRLA201948.0221001
Xu Siyu, Zhang Zhaojian, He Xin, Han Yunxin, Zhang Jingjing, Huang Jie, Chen Dingbo, Yang Junbo. Plasmonic triple-wavelength demultiplexing structure based on metal-insulator-metal waveguides side-coupled with nanoring cavities[J]. Infrared and Laser Engineering, 2019, 48(2): 221001-0221001(7). DOI: 10.3788/IRLA201948.0221001
Citation: Xu Siyu, Zhang Zhaojian, He Xin, Han Yunxin, Zhang Jingjing, Huang Jie, Chen Dingbo, Yang Junbo. Plasmonic triple-wavelength demultiplexing structure based on metal-insulator-metal waveguides side-coupled with nanoring cavities[J]. Infrared and Laser Engineering, 2019, 48(2): 221001-0221001(7). DOI: 10.3788/IRLA201948.0221001

基于金属-绝缘体-金属波导耦合纳米腔的等离子体三波分复用结构

Plasmonic triple-wavelength demultiplexing structure based on metal-insulator-metal waveguides side-coupled with nanoring cavities

  • 摘要: 从理论上和数值上研究了一种基于金属-绝缘体-金属波导耦合纳米腔的等离子体三波分复用结构。该结构由三个输出通道组成,每个通道由两个纳米腔分布于直波导两侧。通过改变环的几何参数、填充介质和内圆和外圆的相对位置,可以动态地调节每个通道的反射和透射光谱。最后,根据三个通道的反射和透射特性,研究了在三个通信波长1 310、1 490和1 550 nm处实现的解复用,并具有优良的性能。将时域耦合模理论和时域有限差分法(FDTD)结合起来进行仿真和分析,为芯片集成全光电路的应用提供了可能。

     

    Abstract: A plasmonic triple-wavelength demultiplexing structure based on metal-insulator-metal waveguides side-coupled with nanoring cavities was proposd by studying theoretically and numerically. The structure consisted of three output channels, each of which was sandwiched by two nanoring cavities. By changing the filling medium of the ring and the relative position of the inner and outer circle, the reflection and transmission spectrum of each channel could be dynamically tunable. Finally, according to the reflection and transmission characteristics of three channels, the demultiplex at three telecommunication wavelengths 1 310 nm, 1 490 nm and 1 550 nm with excellent performance was studied. Temporal coupled-mode (CMT) theory and finite-difference time-domain (FDTD) method are applied to simulation and analysis, and this work can find potential applications for on-chip integrated all-optical circuits.

     

/

返回文章
返回