留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天高光谱遥感应用研究进展(特邀)

李盛阳 刘志文 刘康 赵子飞

李盛阳, 刘志文, 刘康, 赵子飞. 航天高光谱遥感应用研究进展(特邀)[J]. 红外与激光工程, 2019, 48(3): 303001-0303001(15). doi: 10.3788/IRLA201948.0303001
引用本文: 李盛阳, 刘志文, 刘康, 赵子飞. 航天高光谱遥感应用研究进展(特邀)[J]. 红外与激光工程, 2019, 48(3): 303001-0303001(15). doi: 10.3788/IRLA201948.0303001
Li Shengyang, Liu Zhiwen, Liu Kang, Zhao Zifei. Advances in application of space hyperspectral remote sensing(invited)[J]. Infrared and Laser Engineering, 2019, 48(3): 303001-0303001(15). doi: 10.3788/IRLA201948.0303001
Citation: Li Shengyang, Liu Zhiwen, Liu Kang, Zhao Zifei. Advances in application of space hyperspectral remote sensing(invited)[J]. Infrared and Laser Engineering, 2019, 48(3): 303001-0303001(15). doi: 10.3788/IRLA201948.0303001

航天高光谱遥感应用研究进展(特邀)

doi: 10.3788/IRLA201948.0303001
基金项目: 

国家重大专项-载人航天工程空间应用系统“天宫二号任务数据管理平台”项目(Y3140231WN)

详细信息
    作者简介:

    李盛阳(1976-),男,研究员,博士生导师,博士,主要从事遥感图像智能处理与应用、航天地面数据系统技术等方面的研究。Email:shyli@csu.ac.cn

  • 中图分类号: TP79

Advances in application of space hyperspectral remote sensing(invited)

  • 摘要: 近年来随着高光谱成像技术的快速发展,航天高光谱遥感数据在各领域应用研究中取得了良好的发展与突破。文中回顾了国内外航天高光谱成像技术的发展历程,介绍了有代表性的航天高光谱成像仪的主要应用技术指标,较为系统地总结和分析了近五年来航天高光谱遥感数据在国土资源、农林遥感、海洋湖泊遥感、城市环境、灾害监测及其他方面等各领域的最新应用研究进展。对基于AI技术的高光谱信息提取与应用、基于高光谱遥感的多源数据融合与应用以及面向深空探测领域的高光谱数据分析与应用等发展趋势做了展望,未来航天高光谱成像仪技术的进一步突破和应用研究需求的牵引将会推动高光谱应用领域更大范围的创新与发展。
  • [1] Barnsley M J, Settle J J, Cutter M A, et al. The PROBA/CHRIS mission:A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1512-1520.
    [2] Folkman M, Pearlman J, Liao L, et al. EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration[C]//SPIE, 2001, 4151:40-51.
    [3] Yuan Yan, Li Liying, Xiong Wang'e, et al. Mechanical structure design for hyperspectral imager of HJ-1A satellite[J]. Spacecraft Engineering, 2009, 18(6):97-105.
    [4] Lucke R L, Corson M, McGlothlin N R, et al. Hyperspectral imager for the coastal ocean:instrument description and first images[J]. Applied Optics, 2011, 50(11):1501-1516.
    [5] Gao Ming, Zhang Shancong, Li Shengyang. Tiangong-1 hyperspectral remote sensing and application[J]. Journal of Remote Sensing, 2014, 18(s1):2-10. (in Chinese)
    [6] Liu Yinnian. Visible-shortwave infrared hyperspectral imager of GF-5 satellite[J]. Spacecraft Recovery Remote Sengsing, 2018, 39(3):25-28. (in Chinese)
    [7] Murchie S, Arvidson R, Bedini P, et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)[J]. Journal of Geophysical Research Atmospheres, 2007, 112(E5):431-433.
    [8] Li Xiaopeng, Chen Jianpeng, Wang Xiang. Inversion of lunar nearside FeO and Al2O3 based on Chang'e-1 reflectance data[J]. China Mining Magazine, 2018, 27(7):150-156. (in Chinese)
    [9] Staenz K, Held A. Summary of current and future terrestrial civilian hyperspectral spaceborne systems[C]//2012 IEEE International Geoscience and Remote Sensing Symposium, 2012:123-126.
    [10] Stefano P, Angelo P, Simone P, et al. The PRISMA hyperspectral mission:science activities and opportunities for agriculture and land monitoring[C]//2013 IEEE International Geoscience and Remote Sensing Symposium, 2013:4558-4561.
    [11] Guanter L, Kaufmann H, Segl K, et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation[J]. Remote Sensing, 2015, 7(7):8830-8857.
    [12] Lee C M, Cable M L, Hook S J, et al. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities[J]. Remote Sensing of Environment, 2015, 167:6-19.
    [13] Lefevre-Fonollosa M-J, Fratter I, Mandea M. HYPXIM:an innovative hyperspectral satellite for science, security and defence[J]. Egu General Assembly, 2013, 15:10129.
    [14] Chen S, Huang S, Liu Y, et al. Soil and vegetation spectral coupling difference (SVSCD) for minerals extraction from hyperion data in vegetation covered area[J]. Chinese Geographical Science, 2018, 28(6):957-972.
    [15] Lei L, Feng J, Rivard B, et al. Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system:Example for the Jintanzi gold province, China[J].International Journal of Applied Earth Observation Geoinformation, 2017, 64:31-41.
    [16] Lin Jian, Yan Baikun, Dong Xinfeng, et al. Evaluating of Tiangong-1 imaging spectrometer data oriented to geological applications[J]. Journal of Remote Sensing, 2014, 18(s1):74-83. (in Chinese)
    [17] Elatawneh A, Kalaitzidis C, Petropoulos G P, et al. Evaluation of diverse classification approaches for land use/cover mapping in a Mediterranean region utilizing Hyperion data[J]. International Journal of Digital Earth, 2014, 7(3):194-216.
    [18] Xing C, Ma L, Yang X Q. Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J]. Journal of Sensors, 2016, 2016:3632943.
    [19] Li Zhuqiang, Zhu Ruifei, Gao Fang, et al. Hyperspectral remote sensing image classification based on three-dimensional convolution neural network combined with conditional random field optimization[J]. Acta Optica Sinica, 2018, 38(8):404-413. (in Chinese)
    [20] Chen B, Huang B, Xu B. Multi-source remotely sensed data fusion for improving land cover classification[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2017, 124:27-39.
    [21] Chen Bin, Huang Bo, Xu Bing. Multi-source remotely sensed data fusion for improving land cover classification[J]. Isprs Journal of Photogrammetry Remote Sensing, 2017, 124:27-39.
    [22] Lu P, Wang L, Niu Z, et al. Prediction of soil properties using laboratory VIS-NIR spectroscopy and Hyperion imagery[J]. Journal of Geochemical Exploration, 2013, 132:26-33.
    [23] Steinberg A, Chabrillat S, Stevens A, et al. Prediction of common surface soil properties based on Vis-NIR airborne and simulated EnMAP imaging spectroscopy data:prediction accuracy and influence of spatial resolution[J]. Remote Sensing, 2016, 8(8):613.
    [24] Castaldi F, Palombo A, Santini F, et al. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon[J]. Remote Sensing of Environment, 2016, 179:54-65.
    [25] Malec S, Rogge D, Heiden U, et al. Capability of spaceborne hyperspectral EnMAP mission for mapping fractional cover for soil erosion modeling[J].Remote Sensing, 2015, 7(9):11776-11800.
    [26] Liang Liang, Di Liping, Zhang Lianpeng, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165:123-134.
    [27] Heiskanen J, Rautiainen M, Stenberg P, et al. Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2013, 78:1-14.
    [28] Ali I, Greifeneder F, Stamenkovic J, et al. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data[J]. Remote Sensing, 2015, 7(12):16398-16421.
    [29] Kattenborn T, Maack J, Fassnacht F, et al. Mapping forest biomass from space-Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35:359-367.
    [30] Marshall M, Thenkabail P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM plus, and MODIS vegetation indices in crop biomass estimation[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2015, 108:205-218.
    [31] Xu Jin, Meng Jihua. Overview on estimating crop chlorophyll content with remote sensing[J]. Remote Sensing Technology and Application, 2016, 31(1):74-85. (in Chinese)
    [32] Liang L, Qin Z H, Zhao S H, et al. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method[J]. International Journal of Remote Sensing, 2016, 37(13):2923-2949.
    [33] Yang X G, Yu Y, Fan W Y. Chlorophyll content retrieval from hyperspectral remote sensing imagery[J]. Environmental Monitoring and Assessment, 2015, 187(7):13.
    [34] Delloye C, Weiss M, Defourny P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems[J]. Remote Sensing of Environment, 2018, 216:245-261.
    [35] Stagakis S, Markos N, Sykioti O, et al. Tracking seasonal changes of leaf and canopy light use efficiency in a Phlomis fruticosa Mediterranean ecosystem using field measurements and multi-angular satellite hyperspectral imagery[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2014, 97:138-151.
    [36] Castaldi F, Castrignano A, Casa R. A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data[J]. International Journal of Remote Sensing, 2016, 37(18):4317-4336.
    [37] Jia Kun, Li Qiangzi. Review of features selection in crop classification using remote sensing data[J]. Resources Science, 2013, 35(12):2507-2516. (in Chinese)
    [38] Thenkabail P S, Mariotto I, Gumma M K, et al. Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and Hyperion/EO-1 data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):427-439.
    [39] Pan Z K, Huang J F, Wang F M. Multi range spectral feature fitting for hyperspectral imagery in extracting oilseed rape planting area[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 25:21-29.
    [40] Awad M M. Forest mapping:a comparison between hyperspectral and multispectral images and technologies[J].Journal of Forestry Research, 2018, 29(5):1395-1405.
    [41] Zhang Kang, Hei Baoqin, Zhou Zhuang, et al. CNN with coefficient of variation-based dimensionality reduction for hyperspectral remote sensing images classification[J]. Journal of Remote Sensing, 2018, 22(1):87-96. (in Chinese)
    [42] Mariotto I, Thenkabail P S, Huete A, et al. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission[J]. Remote Sensing of Environment, 2013, 139:291-305.
    [43] Zhang Q, Middleton E M, Cheng Y B, et al. Integrating chlorophyll fAPAR and nadir photochemical reflectance index from EO-1/Hyperion to predict cornfield daily gross primary production[J]. Remote Sensing of Environment, 2016, 186:311-321.
    [44] Deng Shiquan, Tian Liqiao, Li Jian, et al. A novel chlorophyll-a inversion model in turbid water for GF-5 satellite hyperspectral sensordir photochemical refle[J]. Journal of Huazhong Normal University(Natural Sciences), 2018, 52(3):409-415. (in Chinese)
    [45] Pan Banglong, Yi Weining, Wang Xianhua, et al. Geostatistics algorithm design on hyperspectral inversion of total phosphorus of lake[J]. Infrared and Laser Engineering, 2012, 41(5):1255-1260. (in Chinese)
    [46] Giardino C, Brando V E, Dekker A G, et al. Assessment of water quality in Lake Garda (Italy) using Hyperion[J]. Remote Sensing of Environment, 2007, 109(2):183-195.
    [47] Fang Xu, Duan Hongtao, Cao Zhigang, et al. Remote monitoring of cyanobacterial blooms using multi-source satellite data:A case of Yuqiao Reservoir, Tianjin[J]. Journal of Lake Sciences, 2018. 30(4):967-978. (in Chinese)
    [48] Casey B. Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform[J]. Journal of Applied Remote Sensing, 2007, 1(1):011502.
    [49] Hu C, Feng L, Hardy R F, et al. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae[J]. Remote Sensing of Environment, 2015, 167:229-246.
    [50] Bell T W, Cavanaugh K C, Siegel D A. Remote monitoring of giant kelp biomass and physiological condition:An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) mission[J]. Remote Sensing of Environment, 2015, 167:218-228.
    [51] Han Y, Li J, Zhang Y, et al. Sea ice detection based on an improved similarity measurement method using hyperspectral data[J]. Sensors, 2017, 17(5):1124.
    [52] Han Y, Li P, Zhang Y, et al. Combining active learning and transductive support vector machines for sea ice detection[J]. Journal of Applied Remote Sensing, 2018, 12(2):026016.
    [53] Wang Dong, Gao Feng, Dong Junyu, et al. Sea ice classification from hyperspectral images based on self-paced boost learning[C]//Igarss 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018:7324-7327.
    [54] Petropoulos G P, Kalivas D P, Georgopoulou I A, et al. Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques:case of Athens, Greece[J]. Journal of Applied Remote Sensing, 2015, 9(1):096088.
    [55] Okujeni A, Linden S V D, Hostert P. Extending the vegetation-impervious-soil model using simulated EnMAP data and machine learning[J]. Remote Sensing of Environment, 2015, 158(10):69-80.
    [56] Li X K, Wu T X, Liu K, et al. Evaluation of the chinese fine spatial resolution hyperspectral satellite TianGong-1 in urban land-cover classification[J]. Remote Sensing, 2016, 8(5):17.
    [57] Zhang X R, Sun Y J, Zhang J Y, et al. Hyperspectral unmixing via deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1755-1759.
    [58] Tang F H, Xu Q. Impervious surface information extraction based on hyperspectral remote sensing imagery[J]. Remote Sensing, 2017, 9(6):550.
    [59] Weng Q, Hu X, Lu D. Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery:a comparison[J]. International Journal of Remote Sensing, 2008, 29(11):3209-3232.
    [60] Jia G J, Burke I C, GoetzA F H, et al. Assessing spatial patterns of forest fuel using AVIRIS data[J]. Remote Sensing of Environment, 2006. 102(3-4):318-327.
    [61] Yebra M, Quan X, Riano D, et al. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing[J].Remote Sensing of Environment, 2018, 212:260-272.
    [62] Mallinis G, Galidaki G, Gitas I. A comparative analysis of EO-1 hyperion, quickbird and landsat TM imagery for fuel type mapping of a typical mediterranean landscape[J]. Remote Sensing, 2014, 6(2):1684-1704.
    [63] Roberts D A, Dennison P E, Gardner M E, et al. Evaluation of the potential of hyperion for fire danger assessment by comparison to the airborne visible/infrared imaging spectrometer[J]. Geoscience Remote Sensing IEEE Transactions on, 2015, 41(6):1297-1310.
    [64] Numata I, Cochrane M A, Galvao L S. Analyzing the impacts of frequency and severity of forest fire on the recovery of disturbed forest using landsat time series and EO-1 hyperion in the southern brazilian amazon[J]. Earth Interactions, 2011, 15(13):1-17.
    [65] Zhang C, Ye F W, He H X, et al. Study on the forest vegetation restoration monitoring using HJ-1A hyperspectral data[C]//35th International Symposium on Remote Sensing of Environment, 2014.
    [66] Abrams M, Pieri D, Realmuto V, et al. Using EO-1 Hyperion data as HyspIRI preparatory data sets for volcanology applied to Mt Etna, Italy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):375-385.
    [67] Amici S, Piscini A, Buongiorno M F, et al. Geological classification of Volcano Teide by hyperspectral and multispectral satellite data[J]. International Journal of Remote Sensing, 2013, 34(9-10):3356-3375.
    [68] Davies G A, Chien S, Baker V, et al. Monitoring active volcanism with the Autonomous Sciencecraft Experiment on EO-1[J]. Remote Sensing of Environment, 2006, 101(4):427-446.
    [69] Stefanov W L, Evans C A. Data collection for disaster response from the international space station[C]//36th International Symposium on Remote Sensing of Environment, 2015:851-855.
    [70] Crowley J K, Hubbard B E, Mars J C. Analysis of potential debris flow source areas on Mount Shasta, California, by using airborne and satellite remote sensing data[J]. Remote Sensing of Environment, 2003, 87(2-3):345-358.
    [71] Savage S H, Levy T E, Jones I W. Prospects and problems in the use of hyperspectral imagery for archaeological remote sensing:a case study from the Faynan copper mining district, Jordan[J]. Journal of Archaeological Science, 2012, 39(2):407-420.
    [72] Davies W H, North P R J. Synergistic angular and spectral estimation of aerosol properties using CHRIS/PROBA-1 and simulated Sentinel-3 data[J]. Atmospheric Measurement Techniques, 2015, 8(4):1719-1731.
    [73] Koppe W, Gnyp M L, Hennig S D, et al. Multi-temporal hyperspectral and radar remote sensing for estimating winter wheat biomass in the North China Plain[J]. Photogrammetrie Fernerkundung Geoinformation, 2012, 3(3):281-298.
    [74] Loizeau D, Mangold N, Poulet F, et al. History of the clay-rich unit at Mawrth Vallis, Mars:High-resolution mapping of a candidate landing site[J]. Journal of Geophysical Research-Planets, 2015, 120(11):1820-1846.
  • [1] 张刘, 李博楠, 卢勇男, 邹阳阳, 王泰雷.  基于Offner凸面光栅星载CO2成像光谱仪光学系统设计 . 红外与激光工程, 2022, 51(7): 20220431-1-20220431-9. doi: 10.3788/IRLA20220431
    [2] 于磊.  成像光谱仪的发展与应用(特邀) . 红外与激光工程, 2022, 51(1): 20210940-1-20210940-11. doi: 10.3788/IRLA20210940
    [3] 张伟, 薛辉, 于磊.  日光诱导叶绿素荧光高光谱成像仪研究(特邀) . 红外与激光工程, 2021, 50(10): 20210311-1-20210311-9. doi: 10.3788/IRLA20210311
    [4] 武志昆, 石恩涛, 王咏梅.  消谱线弯曲PGP型成像光谱仪系统设计 . 红外与激光工程, 2021, 50(6): 20200433-1-20200433-6. doi: 10.3788/IRLA20200433
    [5] 杨雨霆, 陈立恒, 徐赫彤, 李世俊, 吴愉华.  高空气球平台地-月成像光谱仪载荷系统热设计 . 红外与激光工程, 2019, 48(11): 1114004-1114004(10). doi: 10.3788/IRLA201948.1114004
    [6] 申远, 于磊, 陈素娟, 沈威, 陈结祥, 薛辉.  高分辨率近红外成像光谱仪光学系统 . 红外与激光工程, 2019, 48(8): 814005-0814005(7). doi: 10.3788/IRLA201948.0814005
    [7] 于磊, 陈素娟, 陈结祥, 薛辉.  精准农业观测高数值孔径短波红外成像光谱仪光学系统 . 红外与激光工程, 2018, 47(12): 1218007-1218007(7). doi: 10.3788/IRLA201847.1218007
    [8] 袁立银, 谢佳楠, 侯佳, 吕刚, 何志平.  紧凑型红外成像光谱仪光学设计 . 红外与激光工程, 2018, 47(4): 418001-0418001(6). doi: 10.3788/IRLA201847.0418001
    [9] 邱晓晗, 王煜, 常振, 田禹泽, 司福祺.  机载紫外DOAS成像光谱仪CCD成像电路的设计及实施 . 红外与激光工程, 2017, 46(5): 538002-0538002(8). doi: 10.3788/IRLA201746.0538002
    [10] 殷世民, 高丽伟, 梁永波, 朱健铭, 梁晋涛, 陈真诚.  基于FPGA的干涉式红外成像光谱仪实时光谱复原研究 . 红外与激光工程, 2017, 46(7): 720001-0720001(6). doi: 10.3788/IRLA201746.0720001
    [11] 张月, 张琢, 苏云, 郑国宪.  宽谱段高分辨率低温成像光谱仪制冷系统设计 . 红外与激光工程, 2016, 45(3): 323001-0323001(8). doi: 10.3788/IRLA201645.0323001
    [12] 孙佳音, 李淳, 刘英, 李灿, 王建, 刘建卓, 孙强.  不同光栅常数下同心长波红外成像光谱仪对比 . 红外与激光工程, 2016, 45(7): 720002-0720002(6). doi: 10.3788/IRLA201645.0720002
    [13] 贤光, 颜昌翔, 吴从均, 张军强.  温度对机载成像光谱仪光学性能的影响 . 红外与激光工程, 2015, 44(5): 1647-1653.
    [14] 张月, 苏云, 王彬, 郑国宪, 张鹏斌.  用于月球矿物探测的LCTF成像光谱仪热控系统设计 . 红外与激光工程, 2014, 43(12): 3963-3968.
    [15] 汪逸群, 高志良.  成像光谱仪复合色散棱镜支撑设计与试验 . 红外与激光工程, 2014, 43(6): 1982-1987.
    [16] 刘子寒, 季轶群, 石荣宝, 陈宇恒, 沈为民.  机载红外推扫成像光谱仪光学设计 . 红外与激光工程, 2014, 43(9): 2941-2946.
    [17] 徐君, 徐富红, 谢承旺, 黄志东, 刘遵雄, 黄德昌.  采用步进系数校正基于DMD的Hadamard变换光谱数据 . 红外与激光工程, 2013, 42(12): 3470-3474.
    [18] 张庭成, 廖志波.  离轴三反成像光谱仪光学系统设计 . 红外与激光工程, 2013, 42(7): 1863-1865.
    [19] 闫兴涛, 杨建峰, 薛彬, 马小龙, 赵意意, 卜凡.  Offner型成像光谱仪前置光学系统设计 . 红外与激光工程, 2013, 42(10): 2712-2717.
    [20] 王美钦, 王忠厚, 白加光.  成像光谱仪的离轴反射式光学系统设计 . 红外与激光工程, 2012, 41(1): 167-172.
  • 加载中
计量
  • 文章访问数:  865
  • HTML全文浏览量:  160
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2018-12-03
  • 刊出日期:  2019-03-25

航天高光谱遥感应用研究进展(特邀)

doi: 10.3788/IRLA201948.0303001
    作者简介:

    李盛阳(1976-),男,研究员,博士生导师,博士,主要从事遥感图像智能处理与应用、航天地面数据系统技术等方面的研究。Email:shyli@csu.ac.cn

基金项目:

国家重大专项-载人航天工程空间应用系统“天宫二号任务数据管理平台”项目(Y3140231WN)

  • 中图分类号: TP79

摘要: 近年来随着高光谱成像技术的快速发展,航天高光谱遥感数据在各领域应用研究中取得了良好的发展与突破。文中回顾了国内外航天高光谱成像技术的发展历程,介绍了有代表性的航天高光谱成像仪的主要应用技术指标,较为系统地总结和分析了近五年来航天高光谱遥感数据在国土资源、农林遥感、海洋湖泊遥感、城市环境、灾害监测及其他方面等各领域的最新应用研究进展。对基于AI技术的高光谱信息提取与应用、基于高光谱遥感的多源数据融合与应用以及面向深空探测领域的高光谱数据分析与应用等发展趋势做了展望,未来航天高光谱成像仪技术的进一步突破和应用研究需求的牵引将会推动高光谱应用领域更大范围的创新与发展。

English Abstract

参考文献 (74)

目录

    /

    返回文章
    返回