留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz radiation of a butterfly-shaped photoconductive antenna(invited)

Jitao Zhang Mingguang Tuo Min Liang Wei-Ren Ng Michael E. Gehm Hao Xin

Jitao Zhang, Mingguang Tuo, Min Liang, Wei-Ren Ng, Michael E. Gehm, Hao Xin. Terahertz radiation of a butterfly-shaped photoconductive antenna(invited)[J]. 红外与激光工程, 2019, 48(4): 402001-0402001(9). doi: 10.3788/IRLA201948.0402001
引用本文: Jitao Zhang, Mingguang Tuo, Min Liang, Wei-Ren Ng, Michael E. Gehm, Hao Xin. Terahertz radiation of a butterfly-shaped photoconductive antenna(invited)[J]. 红外与激光工程, 2019, 48(4): 402001-0402001(9). doi: 10.3788/IRLA201948.0402001
Jitao Zhang, Mingguang Tuo, Min Liang, Wei-Ren Ng, Michael E. Gehm, Hao Xin. Terahertz radiation of a butterfly-shaped photoconductive antenna (invited)[J]. Infrared and Laser Engineering, 2019, 48(4): 402001-0402001(9). doi: 10.3788/IRLA201948.0402001
Citation: Jitao Zhang, Mingguang Tuo, Min Liang, Wei-Ren Ng, Michael E. Gehm, Hao Xin. Terahertz radiation of a butterfly-shaped photoconductive antenna (invited)[J]. Infrared and Laser Engineering, 2019, 48(4): 402001-0402001(9). doi: 10.3788/IRLA201948.0402001

Terahertz radiation of a butterfly-shaped photoconductive antenna(invited)

doi: 10.3788/IRLA201948.0402001
基金项目: 

National Science Foundation(1126572)

详细信息
    作者简介:

    Jitao Zhang (1985-),male,Assistant Research Professor,Doctor.His research is focused on optics and precision instrumentattion,including optical interferometry,terahertz antenna and spectroscopy,and Brillouin microscopy.Email:zhangjt06@gmail.com

  • 中图分类号: TN821+.4

Terahertz radiation of a butterfly-shaped photoconductive antenna (invited)

Funds: 

National Science Foundation(1126572)

More Information
    Author Bio:

    Jitao Zhang (1985-),male,Assistant Research Professor,Doctor.His research is focused on optics and precision instrumentattion,including optical interferometry,terahertz antenna and spectroscopy,and Brillouin microscopy.Email:zhangjt06@gmail.com

  • 摘要: The terahertz(THz) far-field radiation properties of a butterfly-shaped photoconductive antenna (PCA) were experimentally studied using a home-built THz time-domain spectroscopy(THz-TDS) setup. To distinguish the contribution of in-gap photocurrent and antenna structure to far-field radiation, polarization-dependent THz field was measured and quantified as the illuminating laser beam moved along the bias field within the gap region of electrodes. The result suggests that, although the far-field THz radiation originates from the in-gap photocurrent, the antenna structure of butterfly-shaped PCA dominates the overall THz radiation. In addition, to explore the impact of photoconductive material, radiation properties of butterfly-shaped PCAs fabricated on both low-temperature-grown GaAs(LT-GaAs) and semi-insulating GaAs(Si-GaAs) were characterized and compared. Consistent with previous experiments, it is observed that while Si-GaAs-based PCA can emit higher THz field than LT-GaAs-based PCA at low laser power, it would saturate more severely as laser power increased and eventually be surpassed by LT-GaAs-based PCA. Beyond that, it is found the severe saturation effect of Si-GaAs was due to the longer carrier lifetime and higher carrier mobility, which was confirmed by the numerical simulation.
  • [1] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertzian dipoles[J]. Applied Physics Letters, 1984, 45(3):284-286.
    [2] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-Modern techniques and applications[J]. Laser Photonics Reviews, 2011, 5(1):124-166.[3 Burford N M, El-Shenawee M O. Review of terahertz photoconductive antenna technology[J]. Optical Engineering, 2017, 56(1):010901.
    [3] Tani M, Matsuura S, Sakai K, et al. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs[J]. Applied Optics, 1997, 36(30):7853-7859.
    [4] Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas[J]. Journal of the Optical Society of America B, 1996, 13(11):2424-2436.
    [5] Tani M, Yamamoto K, Estacio E S, et al. Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(4):393-404.
    [6] Hou L, Shi W. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability[J]. IEEE Transactions on Electron Devices, 2013, 60(5):1619-1624.
    [7] Reklaitis A. Comparison of efficiencies of GaAs-based pulsed terahertz emitters[J]. Journal of Applied Physics, 2007, 101:116104.
    [8] Miyamaru F, Saito Y, Yamamoto K, et al. Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas[J]. Applied Physics Letters, 2010, 96(21):211104.
    [9] Gao Y, Yang C E, Chang Y, et al. Terahertz-radiation-enhanced broadband terahertz generation from large aperture photoconductive antenna[J]. Applied Physics B, 2012, 109(1):133-136.
    [10] Liu T A, Chou R H, Pan C L. Dependence of terahertz radiation on gap sizes of biased multi-energy arsenic-ion-implanted and semi-insulating GaAs antennas[J]. Applied Physics B, 2010, 95(4):739-744.
    [11] Kono S, Gu P, Tani M, et al. Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces[J]. Applied Physics B, 2000, 71(6):901-904.
    [12] Zhang J, Mikulics M, Adam R, et al. Generation of THz transients by photoexcited single-crystal GaAs meso-structures[J]. Applied Physics B, 2013, 113(3):339-344.
    [13] Zhang J, Tuo M, Liang M, et al. Contribution assessment of antenna structure and in-gap photocurrent in terahertz radiation of photoconductive antenna[J]. J App Phys, 2018, 124:053107.
    [14] Darrow J T, Zhang X C, Auston D H, et al. Saturation properties of large-aperture photoconducting antennas[J]. IEEE Journal of Quantum Electronics, 1992, 28(6):1607-1616.
    [15] Keil U D, Dykaar D R. Ultrafast pulse generation in photoconductive switches[J]. IEEE Journal of Quantum Electronics, 1996, 32(9):1664-1671.
    [16] Benicewicz P K, Taylor A J. Scaling of terahertz radiation from large-aperture biased InP photoconductors[J]. Optics Letters, 1993, 18(16):1332-1334.
    [17] Sano E, Shibata T. Fullwave analysis of picosecond photoconductive switches[J]. IEEE Journal of Quantum Electronics, 1990, 26(2):372-377.
    [18] Moreno E, Pantoja M F, Garcia S G, et al. Time-domain numerical modeling of THz photoconductive antennas[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4):490-500.
    [19] Zhang J, Tuo M, Liang M, et al. Numerical analysis of terahertz generation characteristics of photoconductive antenna[C]//IEEE Antennas and Propagation Society International Symposium (APSURSI), 2014:1746-1747.
    [20] Zhang J. Numerical analysis of the emission properties of terahertz photoconductive antenna by finite-difference-time-domain method[J]. arXiv Preprint arXiv, 2014, 1407.2881:1-11.
  • [1] Du Haiwei, Xu Chen.  THz generation from slow turn-on, rapid turn-off femtosecond laser pulses interaction with gas plasma . 红外与激光工程, 2022, 51(5): 20210361-1-20210361-8. doi: 10.3788/IRLA20210361
    [2] Yang Xiuwei, Zhang Dehai, Xiao Zhongjun, Li Xiangdong, Zhang Lin.  Effect of surface roughness on THz reflection measurement . 红外与激光工程, 2021, 50(3): 20200209-1-20200209-7. doi: 10.3788/IRLA20200209
    [3] Wang Xudong, Lv Xin, Cheng Gong.  Terahertz vertical transition structure based on coupling cavity . 红外与激光工程, 2020, 49(6): 20190566-1-20190566-5. doi: 10.3788/IRLA20190566
    [4] 潘奕, 郑渚, 丁庆, 姚勇.  宽带太赫兹偶极子光电导接收天线研究 . 红外与激光工程, 2019, 48(1): 125002-0125002(6). doi: 10.3788/IRLA201948.0125002
    [5] 张学迁, 张慧芳, 田震, 谷建强, 欧阳春梅, 路鑫超, 韩家广, 张伟力.  利用介质超材料控制太赫兹波的振幅和相位 . 红外与激光工程, 2016, 45(4): 425004-0425004(6). doi: 10.3788/IRLA201645.0425004
    [6] 李斌, 赵春江.  用于太赫兹光谱测量的土壤样品压片制备方法研究 . 红外与激光工程, 2016, 45(6): 625001-0625001(5). doi: 10.3788/IRLA201645.0625001
    [7] 徐鸣, 李孟霞, 安鑫, 卞康康, 施卫.  红外猝灭非线性砷化镓光电导开关产生太赫兹的实验研究 . 红外与激光工程, 2016, 45(4): 425001-0425001(5). doi: 10.3788/IRLA201645.0425001
    [8] 何晓阳, 张屹遐, 杨春, 陈琦.  太赫兹光子晶体光纤与天线设计 . 红外与激光工程, 2015, 44(2): 534-538.
    [9] 许文忠, 钟凯, 梅嘉林, 徐德刚, 王与烨, 姚建铨.  太赫兹波在沙尘中衰减特性 . 红外与激光工程, 2015, 44(2): 523-527.
    [10] 郭风雷, 张明月, 肖征, 李向军, 刘建军.  连续波THz-CT 的折射问题研究 . 红外与激光工程, 2015, 44(3): 969-973.
    [11] 李慧, 范文慧, 刘佳.  改变天线泵浦光斑尺寸对太赫兹辐射影响的研究 . 红外与激光工程, 2015, 44(2): 528-533.
    [12] 童劲超, 黄敬国, 黄志明.  基于铟镓砷材料的新型太赫兹/亚毫米波探测器研究 . 红外与激光工程, 2014, 43(10): 3347-3351.
    [13] 王蓉蓉, 吴振森, 张艳艳, 王明军.  太赫兹波段信号在雾中的传输特性研究 . 红外与激光工程, 2014, 43(8): 2662-2667.
    [14] 华厚强, 江月松, 苏林, 闻东海, 余荣, 武小芳.  自由空间复杂导体目标的太赫兹RCS高频分析方法 . 红外与激光工程, 2014, 43(3): 687-693.
    [15] 蒋彦雯, 邓彬, 王宏强, 吕治辉, 秦玉亮.  基于时域光谱系统的太赫兹圆柱RCS 测量 . 红外与激光工程, 2014, 43(7): 2223-2227.
    [16] 鞠智鹏, 李德华, 周薇, 马建军, 李乾坤, 屈操.  相位阶跃变化型太赫兹波带片 . 红外与激光工程, 2013, 42(6): 1519-1522.
    [17] 刘晓旻, 李苏贵, 弓巧侠, 鲁旭, 马省, 梁二军, 李新建.  多孔硅薄膜对p 型单晶硅太赫兹波段透射特性的影响 . 红外与激光工程, 2013, 42(5): 1236-1240.
    [18] 李运达, 李琦, 刘正君, 王骐.  太赫兹计算机辅助层析图像重构算法仿真研究 . 红外与激光工程, 2013, 42(5): 1228-1235.
    [19] 何雅兰, 何金龙, 刘平安.  低损耗太赫兹镀膜金属波导研究 . 红外与激光工程, 2013, 42(6): 1533-1536.
    [20] 张李伟, 尚丽平, 唐金龙, 夏祖学, 邓琥.  34μm孔径GaAs偶极子光电导天线辐射特性仿真研究 . 红外与激光工程, 2013, 42(1): 108-112.
  • 加载中
计量
  • 文章访问数:  559
  • HTML全文浏览量:  115
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 修回日期:  2018-11-14
  • 刊出日期:  2019-04-25

Terahertz radiation of a butterfly-shaped photoconductive antenna(invited)

doi: 10.3788/IRLA201948.0402001
    作者简介:

    Jitao Zhang (1985-),male,Assistant Research Professor,Doctor.His research is focused on optics and precision instrumentattion,including optical interferometry,terahertz antenna and spectroscopy,and Brillouin microscopy.Email:zhangjt06@gmail.com

基金项目:

National Science Foundation(1126572)

  • 中图分类号: TN821+.4

摘要: The terahertz(THz) far-field radiation properties of a butterfly-shaped photoconductive antenna (PCA) were experimentally studied using a home-built THz time-domain spectroscopy(THz-TDS) setup. To distinguish the contribution of in-gap photocurrent and antenna structure to far-field radiation, polarization-dependent THz field was measured and quantified as the illuminating laser beam moved along the bias field within the gap region of electrodes. The result suggests that, although the far-field THz radiation originates from the in-gap photocurrent, the antenna structure of butterfly-shaped PCA dominates the overall THz radiation. In addition, to explore the impact of photoconductive material, radiation properties of butterfly-shaped PCAs fabricated on both low-temperature-grown GaAs(LT-GaAs) and semi-insulating GaAs(Si-GaAs) were characterized and compared. Consistent with previous experiments, it is observed that while Si-GaAs-based PCA can emit higher THz field than LT-GaAs-based PCA at low laser power, it would saturate more severely as laser power increased and eventually be surpassed by LT-GaAs-based PCA. Beyond that, it is found the severe saturation effect of Si-GaAs was due to the longer carrier lifetime and higher carrier mobility, which was confirmed by the numerical simulation.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回