留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泵浦线宽和波长飘移对全固态Tm激光器性能的影响

王娟 黄海洲 黄见洪 葛燕 戴殊韬 邓晶 林紫雄 翁文 林文雄

王娟, 黄海洲, 黄见洪, 葛燕, 戴殊韬, 邓晶, 林紫雄, 翁文, 林文雄. 泵浦线宽和波长飘移对全固态Tm激光器性能的影响[J]. 红外与激光工程, 2019, 48(4): 405002-0405002(9). doi: 10.3788/IRLA201948.0405002
引用本文: 王娟, 黄海洲, 黄见洪, 葛燕, 戴殊韬, 邓晶, 林紫雄, 翁文, 林文雄. 泵浦线宽和波长飘移对全固态Tm激光器性能的影响[J]. 红外与激光工程, 2019, 48(4): 405002-0405002(9). doi: 10.3788/IRLA201948.0405002
Wang Juan, Huang Haizhou, Huang Jianhong, Ge Yan, Dai Shutao, Deng Jing, Lin Zixiong, Weng Wen, Lin Wenxiong. Influence of pump bandwidth and wavelength-drift on laser performance of solid-state Tm laser[J]. Infrared and Laser Engineering, 2019, 48(4): 405002-0405002(9). doi: 10.3788/IRLA201948.0405002
Citation: Wang Juan, Huang Haizhou, Huang Jianhong, Ge Yan, Dai Shutao, Deng Jing, Lin Zixiong, Weng Wen, Lin Wenxiong. Influence of pump bandwidth and wavelength-drift on laser performance of solid-state Tm laser[J]. Infrared and Laser Engineering, 2019, 48(4): 405002-0405002(9). doi: 10.3788/IRLA201948.0405002

泵浦线宽和波长飘移对全固态Tm激光器性能的影响

doi: 10.3788/IRLA201948.0405002
基金项目: 

国家重点研发计划(2017YFB1104502,2016YFB0701004)

详细信息
    作者简介:

    王娟(1990-),女,硕士生,主要从事中红外激光器和3D打印方面的研究。Email:wangjuan@fjirsm.ac.cn

  • 中图分类号: TN248.1

Influence of pump bandwidth and wavelength-drift on laser performance of solid-state Tm laser

  • 摘要: 为了研究泵浦带宽和波长飘移对全固态激光器的影响,进行了光谱分析和热效应分析,该分析是在准三能级Tm:YAG激光器上进行的。提出光谱模型和晶体热模型,用来研究不同泵浦带宽下Tm激光器的效率和热效应。在Tm激光实验中,结构紧凑、高效率的键合Tm激光器得到验证,中心波长输出在2 013.2 nm。这一激光器的泵浦源是0.1 nm窄线宽的光纤耦合激光二极管,其输出波长是784.9 nm。最大输出功率为7.96 W,斜率效率为62.5%,光-光转换效率为53.3%。当耦合透过率为3%时,激光功率从1.87 W增大到14.93 W,激光波长从2 013.25~2 014.53 nm飘移。当耦合透过率为5%时,输出波长从2 013.91 nm飘移到2 014.26 nm。尽管晶体的最高温度会稍有上升,但0.1 nm窄带宽泵浦可以有效提高激发效率,因此具有更高的激光效率。通过综合考虑泵浦带宽和波长飘移以及增益介质的光谱分布,该研究可以扩展到其他固体激光器来选择泵浦源,有助于实现高效的激光系统。
  • [1] Lamrini S, Koopmann P, Schfer M, et al. Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9m[J]. Applied Physics B, 2012, 106(2):315-319.
    [2] Ji E, Liu Q, Cao X, et al. Resonantly fiber-coupled diode-pumped Ho3+:YLiF4 laser in continuous-wave and Q-switched operation[J]. IEEE Journal of Quantum Electronics, 2016, 52(7):1-8.
    [3] Huang H, Huang J, Liu H, et al. Manipulating the wavelength-drift of a Tm laser for resonance enhancement in an intra-cavity pumped Ho laser[J]. Optics Express, 2018, 26(5):5758-5768.
    [4] Huang H, Huang J, Liu H, et al. High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode[J]. Laser Physics Letters, 2016, 13(9):095001.
    [5] Fan T Y, Huber G, Byer R L, et al. Continuous-wave operation at 2.1m of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K[J]. Optics Letters, 1987, 12(9):678-680.
    [6] Gao C, Gao M, Zhang Y, et al. Stable single-frequency output at 2.01m from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature[J]. Optics Letters, 2009, 34(19):3029-3031.
    [7] Fan T Y, Huber G, Byer R L, et al. Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG[J]. IEEE Journal of Quantum Electronics, 1988, 24(6):924-933.
    [8] Scholle K, Lamrini S, Koopmann P, et al. 2m laser sources and their possible applications[C]//Frontiers in Guided Wave Optics and Optoelectronics. InTech, 2010:10.5772/39538.
    [9] Koch G J, Dharamsi A N, Fitzgerald C M, et al. Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide[J]. Applied Optics, 2000, 39(21):3664-3669.
    [10] Theisen D, Ott V, Bernd H W, et al. CW high power IR-laser at 2m for minimally invasive surgery[C]//European Conference on Biomedical Optics. Optical Society of America, 2003:5142_96.
    [11] Liu J, Shen D, Huang H, et al. Highly efficient Tm-doped yttrium aluminum garnet ceramic laser based on the novel fiber-bulk hybrid configuration[J]. Applied Physics Express, 2013, 6(9):092107.
    [12] Elder I F, Payne M J P. Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF[J]. Optics Communications, 1998, 145(1-6):329-339.
    [13] Sato A, Asai K, Itabe T. Double-pass-pumped Tm:YAG laser with a simple cavity configuration[J]. Applied Optics, 1998, 37(27):6395-6400.
    [14] Rustad G, Stenersen K. Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion[J]. IEEE Journal of Quantum Electronics, 1996, 32(9):1645-1656.
    [15] Zhu H, Zhang Y, Zhang J, et al. 1.96m Tm:YAG ceramic laser[J]. IEEE Photonics Journal, 2017, 9(6):1506607.
    [16] Wu C, Ju Y, Li Y, et al. Diode-pumped Tm:LuAG laser at room temperature[J]. Chinese Optics Letters, 2008, 6(6):415-416.
    [17] Yu H, Petrov V, Griebner U, et al. Compact passively Q-switched diode-pumped Tm:LiLuF4 laser with 1.26 mJ output energy[J]. Optics Letters, 2012, 37(13):2544-2546.
    [18] Soulard R, Tyazhev A, Doualan J L, et al. 2.3m Tm3+:YLF mode-locked laser[J]. Optics Letters, 2017, 42(18):3534-3536.
    [19] Zhang Haikun, Huang Jiyang, Zhou Cheng, et al. CW mode-locked Tm:YAP laser with semiconductor saturable-absorber at around 2m[J]. Infrared and Laser Engineering, 2018, 47(5):0505003. (in Chinese)
    [20] Yumoto M, Saito N, Urata Y, et al. 128 mJ/Pulse, laser-diode-pumped, Q-switched Tm:YAG laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1):364-368.
    [21] Zhan M J, Zou Y W, Lin Q F, et al. Ti:sapphire pumped passively mode-locked Tm:YAG ceramic laser[J]. Acta Physica Sinica, 2014, 63(1):014205. (in Chinese)
    [22] Cao D, Peng Q, Du S, et al. A 200 W diode-side-pumped CW 2m Tm:YAG laser with water cooling at 8℃[J]. Applied Physics B, 2011, 103(1):83-88.
    [23] Beach R J, Sutton S B, Skidmore J A, et al. High-power 2-m wing-pumped Tm:YAG laser[C]//Conference on Lasers and Electro-Optics, 1996:319.
    [24] Honea E C, Beach R J, Sutton S B, et al. 115-W Tm:YAG diode pumped solid state laser[J]. IEEE Journal of Quantum Electronics, 1997, 33(9):1592-1600.
    [25] Zhang X F, Xu Y T, Li C M, et al. A continuous-wave diode-side-pumped Tm:YAG laser with ouput 51 W[J]. Chinese Physics Letters, 2008, 25(10):3673-3675.
    [26] Wang C, Niu Y, Du S, et al. High power diode side pumped rod Tm:YAG laser at 2.07m[J]. Applied Optics, 2013, 52(31):7494-7497.
    [27] Eichhorn M. Quasi three level solid state lasers in the near and mid infrared based on trivalent rare earth ions[J]. Applied Physics B, 2008, 93(2-3):269.
    [28] Eichhom M, Kieleck C, Hirth A. OP-GaAs OPO pumped by a Q-switched Tm, Ho:Silica fiber laser[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009:CWH2.
    [29] Cheng X, Shang J, Jiang B. Analysis of the thermal effects in diode-pumped Tm:YAG ceramic slab lasers[J]. Laser Physics, 2017, 27(3):035803.
    [30] Huang H Z, Huang J H, Liu H G, et al. High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode[J]. Laser Physics Letters, 2016, 13(9):095001.
    [31] Honea E C, Beach R J, Sutton S B, et al. 115-W Tm:YAG diode-pumped solid-state laser[J]. IEEE Journal of Quantum Electronics, 1997, 33(9):1592-1600.
    [32] Caird J, Deshazer L, Nella J. Characteristics of room-temperature 2.3-m laser emission from Tm3+ in YAG and YAlO3[J]. IEEE Journal of Quantum Electronics, 1975, 11(11):874-881.
    [33] Li B, Ding X, Sun B, et al. 12.45 W wavelength-locked 878.6 nm laser diode in-band pumped multisegmented Nd:YVO4 laser operating at 1342 nm[J]. Applied Optics, 2014, 53(29):6778-6781.
    [34] Scholle K, Fuhrberg P. In-band pumping of high-power Ho:YAG lasers by laser diodes at 1.9m[C]//Conference on Lasers and Electro-optics. Optical Society of America, 2008:CTuAA1.
    [35] Zhang Haiwei, Sheng Quan, Shi Wei, et al. Thermal distribution characteristic of high-power laser double-cladding thulium-doped fiber amplifier[J]. Infrared and Laser Engineering, 2017, 46(6):0622004.
    [36] Cheng X, Shang J, Jiang B. Analysis of the thermal effects in diode-pumped Tm:YAG ceramic slab lasers[J]. Laser Physics, 2017, 27(3):035803.
    [37] Pfistner C, Weber R, Weber H P, et al. Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods[J]. IEEE Journal of Quantum Electronics, 1994, 30(7):1605-1615.
    [38] Huang H, Gao P, Liu H G, et al. Validation of spectrum method for improving efficiency of continuous-wave Q-switched Tm-doped yttrium aluminum garnet laser[J]. Science China Physics, Mechanics Astronomy, 2018, 61(3):034221.
    [39] Chen X, Wu J, Wu C, et al. Analysis of thermal effects in a pulsed laser diode end pumped single-ended composite Tm:YAG laser[J]. Laser Physics, 2015, 25(4):045003.
  • [1] 任嘉欣, 李隆, 李昕阳, 杨恒鑫, 纪玉潇, 张春玲.  激光二极管端泵方形Tm:YAG复合晶体的热效应 . 红外与激光工程, 2024, 53(3): 20230717-1-20230717-10. doi: 10.3788/IRLA20230717
    [2] 李昕阳, 李隆, 任嘉欣, 贺政隆, 石镨, 宁江浩, 张春玲.  激光二极管端泵Yb:YAG晶体的温度场及应力场 . 红外与激光工程, 2024, 53(3): 20230683-1-20230683-8. doi: 10.3788/IRLA20230683
    [3] 王坤, 谭博文, 陈义夫, 王雨雷, 白振旭, 吕志伟.  液体SBS-PCM中泵浦光重复频率对热对流特性的影响(特邀) . 红外与激光工程, 2023, 52(8): 20230415-1-20230415-8. doi: 10.3788/IRLA20230415
    [4] 孙佳宁, 王雨雷, 张雨, 齐瑶瑶, 丁洁, 颜秉政, 白振旭, 吕志伟.  LD端面泵浦Er:Yb:glass/Co:MALO晶体热效应分析 . 红外与激光工程, 2023, 52(8): 20230349-1-20230349-12. doi: 10.3788/IRLA20230349
    [5] 李志杰, 孔庆庆, 张明栋, 金子蘅, 卞殷旭, 沈华, 朱日宏.  万瓦级激光光闸的热效应分析及处理 . 红外与激光工程, 2022, 51(2): 20210909-1-20210909-8. doi: 10.3788/IRLA20210909
    [6] 张玥婷, 谭毅, 王继红, 彭起, 杨智焜.  激光窗口杂散光固气耦合热效应对光束质量的影响 . 红外与激光工程, 2022, 51(9): 20210966-1-20210966-9. doi: 10.3788/IRLA20210966
    [7] 万颖超, 杨保来, 奚小明, 张汉伟, 叶云, 王小林.  不同泵浦波长光纤激光器模式不稳定效应对比 . 红外与激光工程, 2022, 51(4): 20210256-1-20210256-8. doi: 10.3788/IRLA20210256
    [8] 李隆, 张秋娟, 张春玲, 杨毅然.  脉冲激光二极管巴条侧面泵浦Nd:YAG陶瓷瞬态热效应研究 . 红外与激光工程, 2021, 50(11): 20200495-1-20200495-7. doi: 10.3788/IRLA20200495
    [9] 袁振, 令维军, 陈晨, 杜晓娟, 王翀, 王文婷, 薛婧雯, 董忠.  高单脉冲能量被动调Q锁模Tm, Ho: LLF激光器 . 红外与激光工程, 2021, 50(8): 20210349-1-20210349-6. doi: 10.3788/IRLA20210349
    [10] 张鹏泉, 项铁铭, 史屹君.  绿光泵浦的黄光波段可调谐窄线宽光学参量振荡器 . 红外与激光工程, 2020, 49(11): 20200275-1-20200275-5. doi: 10.3788/IRLA20200275
    [11] 刘全喜, 任钢, 李轶国, 岳通, 王莉, 肖星, 邓翠, 李佳玲.  激光二极管端面抽运梯度浓度掺杂介质激光器热效应的有限元法分析 . 红外与激光工程, 2019, 48(11): 1105004-1105004(11). doi: 10.3788/IRLA201948.1105004
    [12] 周广龙, 徐建明, 陆健, 李广济, 张宏超.  三结太阳电池栅线对激光辐照中的传热影响研究 . 红外与激光工程, 2018, 47(12): 1220001-1220001(5). doi: 10.3788/IRLA201847.1220001
    [13] 王磊, 聂劲松, 叶庆, 胡瑜泽.  0.53 μm全固态激光器热效应及其补偿技术研究 . 红外与激光工程, 2017, 46(4): 406003-0406003(7). doi: 10.3788/IRLA201746.0406003
    [14] 张海伟, 盛泉, 史伟, 白晓磊, 付士杰, 姚建铨.  高功率双包层掺铥光纤放大器温度分布特性 . 红外与激光工程, 2017, 46(6): 622004-0622004(8). doi: 10.3788/IRLA201746.062200
    [15] 马建立, 姜诗琦, 于淼, 刘海娜, 王军龙, 王学锋.  基于波长锁定泵浦单振荡级千瓦光纤激光器 . 红外与激光工程, 2016, 45(11): 1105002-1105002(5). doi: 10.3788/IRLA201645.1105002
    [16] 刘旭, 魏靖松, 谭朝勇, 朱孟真, 程勇.  激光器免温控泵浦源的多波长选择理论 . 红外与激光工程, 2016, 45(5): 505004-0505004(5). doi: 10.3788/IRLA201645.0505004
    [17] 肖凯博, 蒋新颖, 袁晓东, 郑建刚, 郑万国.  间隔掺杂低温Yb:YAG叠片放大器的热效应优化 . 红外与激光工程, 2016, 45(12): 1206004-1206004(8). doi: 10.3788/IRLA201645.1206004
    [18] 蒙裴贝, 颜凡江, 李旭, 郑永超.  热边界和泵浦结构对激光晶体热效应的影响 . 红外与激光工程, 2015, 44(11): 3216-3222.
    [19] 张德平, 吴超, 张蓉竹, 孙年春.  LD 端面泵浦分离式放大器结构的热效应研究 . 红外与激光工程, 2015, 44(8): 2250-2255.
    [20] 许艳军, 赵宇宸, 沙巍, 齐光.  大尺寸SIC空间反射镜离子束加工热效应分析与抑制 . 红外与激光工程, 2014, 43(8): 2556-2561.
  • 加载中
计量
  • 文章访问数:  452
  • HTML全文浏览量:  75
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2018-12-17
  • 刊出日期:  2019-04-25

泵浦线宽和波长飘移对全固态Tm激光器性能的影响

doi: 10.3788/IRLA201948.0405002
    作者简介:

    王娟(1990-),女,硕士生,主要从事中红外激光器和3D打印方面的研究。Email:wangjuan@fjirsm.ac.cn

基金项目:

国家重点研发计划(2017YFB1104502,2016YFB0701004)

  • 中图分类号: TN248.1

摘要: 为了研究泵浦带宽和波长飘移对全固态激光器的影响,进行了光谱分析和热效应分析,该分析是在准三能级Tm:YAG激光器上进行的。提出光谱模型和晶体热模型,用来研究不同泵浦带宽下Tm激光器的效率和热效应。在Tm激光实验中,结构紧凑、高效率的键合Tm激光器得到验证,中心波长输出在2 013.2 nm。这一激光器的泵浦源是0.1 nm窄线宽的光纤耦合激光二极管,其输出波长是784.9 nm。最大输出功率为7.96 W,斜率效率为62.5%,光-光转换效率为53.3%。当耦合透过率为3%时,激光功率从1.87 W增大到14.93 W,激光波长从2 013.25~2 014.53 nm飘移。当耦合透过率为5%时,输出波长从2 013.91 nm飘移到2 014.26 nm。尽管晶体的最高温度会稍有上升,但0.1 nm窄带宽泵浦可以有效提高激发效率,因此具有更高的激光效率。通过综合考虑泵浦带宽和波长飘移以及增益介质的光谱分布,该研究可以扩展到其他固体激光器来选择泵浦源,有助于实现高效的激光系统。

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回