留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光成丝诱导形成水凝物的机理研究进展

曾庆伟 高太长 刘磊 刘西川 胡帅 张克瑾 陈鸣

曾庆伟, 高太长, 刘磊, 刘西川, 胡帅, 张克瑾, 陈鸣. 飞秒激光成丝诱导形成水凝物的机理研究进展[J]. 红外与激光工程, 2019, 48(4): 406002-0406002(6). doi: 10.3788/IRLA201948.0406002
引用本文: 曾庆伟, 高太长, 刘磊, 刘西川, 胡帅, 张克瑾, 陈鸣. 飞秒激光成丝诱导形成水凝物的机理研究进展[J]. 红外与激光工程, 2019, 48(4): 406002-0406002(6). doi: 10.3788/IRLA201948.0406002
Zeng Qingwei, Gao Taichang, Liu Lei, Liu Xichuan, Hu Shuai, Zhang Kejin, Chen Ming. Advances in mechanism research of femtosecond laser filamentation induced hydrometeors formation[J]. Infrared and Laser Engineering, 2019, 48(4): 406002-0406002(6). doi: 10.3788/IRLA201948.0406002
Citation: Zeng Qingwei, Gao Taichang, Liu Lei, Liu Xichuan, Hu Shuai, Zhang Kejin, Chen Ming. Advances in mechanism research of femtosecond laser filamentation induced hydrometeors formation[J]. Infrared and Laser Engineering, 2019, 48(4): 406002-0406002(6). doi: 10.3788/IRLA201948.0406002

飞秒激光成丝诱导形成水凝物的机理研究进展

doi: 10.3788/IRLA201948.0406002
基金项目: 

国家自然科学基金(41575024)

详细信息
    作者简介:

    曾庆伟(1990-),男,博士生,主要从事飞秒强激光大气应用方面的研究。Email:zengqingwei519@yahoo.com

  • 中图分类号: TN249

Advances in mechanism research of femtosecond laser filamentation induced hydrometeors formation

  • 摘要: 近些年,飞秒激光成丝诸多非线性效应及其潜在应用逐渐成为超短脉冲激光领域研究的重要方向之一。飞秒激光成丝诱导水汽凝结、降雪和破碎冰晶二次增长等方面的探索研究,为人类寻找主动控制天气的新技术指明了方向,具有重要的科学意义和应用前景。首先,重点分析梳理了飞秒激光成丝诱导形成水凝物的观测和机理研究进展;然后,讨论了飞秒激光诱导水凝物形成机理研究中尚待解决的关键科学问题,以及对该领域未来发展方向做了展望。
  • [1] Braun A, Korn, G, Liu, X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1):73-75.
    [2] Chin S L, Chen Y, Kosareva O, et al. What is a filament[J]. Laser Physics, 2008, 18(8):962-964.
    [3] Ma C, Lin W. Normal dispersion effects on the nonlinear focus[J]. Journal of the Optical Society of America B, 2016, 33(6):1055-1059.
    [4] Wang Biyi, Chen Yanan. Research on technology of air plasma channel discharging induced by femtosecond laser[J]. Electro-Optic Technology Application, 2017, 32(3):24-27. (in Chinese)
    [5] Chin S L, Xu H L, Luo Q. Filamentation remote sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 2009, 95(1):1-12.
    [6] Chen Na, Liu Raoxiang, Du Shengze. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy[J]. Laser Optoelectronics Progress, 2016, 53(5):26-37. (in Chinese)
    [7] Lahav O, Levi L, Orr I, et al. Long-lived waveguides and sound-wave generation by laser filamentation[J]. Physical Review A, 2014, 90(2):021801-021806.
    [8] Liu Weiwei, Zhao Jiayu, Zhang Yizhu, et al. Research on superluminal propagation of terahertz wave during femtosecond laser filamentation[J]. Infrared and Laser Engineering, 2016, 45(4):0402001. (in Chinese)
    [9] Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air[J]. Nature Photonics, 2010, 4(7):451-456.
    [10] Ju J J, Liu J S, Wang C, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 2012, 37(7):1214-1216.
    [11] Wolf J P. Short pulse lasers for weather control[J]. Reports on Progress in Physics Physical Society, 2018, 81(2):026001.
    [12] Wilson C. On the condensation nuclei produced in gases by the action of rontgen rays, uranium rays, ultra-violet light and other agents[J]. Philosophical Transactions of the Royal Society of London, 1899, 192(1):403-453.
    [13] Henin S, Petit, Y, Rohwetter, P, et al. Field measurements suggest the mechanism of laser-assisted water condensation[J]. Nature Communications, 2011, 2(8):456-463.
    [14] Clark I D Noxon, J F. Particle formation during water-vapor photolysis[J]. Science, 1971, 174(4012):941-944.
    [15] Adachi M, Okuyama K, Seinfeld J H. Experimental studies of ion-induced nucleation[J]. Journal of Aerosol Science, 1992, 23(4):327-337.
    [16] Saathoff H, Henin S, Stelmaszczyk K, et al. Laser filament-induced aerosol formation[J]. Atmospheric Chemistry and Physics, 2013, 13(9):4593-4604.
    [17] Petit Y, Henin S, Kasparian J, et al. Production of ozone and nitrogen oxides by laser filamentation[J]. Applied Physics Letters, 2010, 97(2):021108-021111.
    [18] Rohwetter P, Kasparian J, Woeste L, et al. Modelling of HNO3-mediated laser-induced condensation:A parametric study[J]. Journal of Chemical Physics, 2011, 135(13):134703-134709.
    [19] Mongin D, Slowik J G, Schubert E, et al. Non-linear photochemical pathways in laser-induced atmospheric aerosol formation[J]. Scientific Reports, 2015, 5:14978-14987.
    [20] Zhang R, Suh I, Zhao J, et al. Atmospheric new particle formation enhanced by organic acids[J]. Science, 2004, 304(5676):1487-1490.
    [21] Berndt T, Stratmann F, Sipil M, et al. Laboratory study on new particle formation from the reaction OH+SO2:Influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process[J]. Atmospheric Chemistry and Physics, 2010, 10(15):7101-7116.
    [22] Almeida J, Schobesberger S, Kurten A, et al. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere[J]. Nature, 2013, 502(7471):359-363.
    [23] Ryabtsev A, Pouya S, Koochesfahani M, et al. Vortices in the wake of a femtosecond laser filament[J]. Optics Express, 2014, 22(21):26098-26102.
    [24] Sun H Y, Liu J S, Wang C, et al. Laser filamentation induced air-flow motion in a diffusion cloud chamber[J]. Optics Express, 2013, 21(8):9255-9266.
    [25] Ju J J, Sun H Y, Sridharan A, et al. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber:Experimental and theoretical study[J]. Physical Review E, 2013, 88(6):062803-062810.
    [26] Liu Y H, Sun H Y, Liu J S, et al. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases[J]. Optics Express, 2016, 24(7):7364-7373.
    [27] Ju J J, Liu J S, Liang H, et al. Femtosecond laser filament induced condensation and precipitation in a cloud chamber[J]. Scientific Reports, 2016, 6(1):25417-25427.
    [28] Ju J J, Liu J S, Wang C, et al. Effects of initial humidity and temperature on laser-filamentation induced condensation and snow formation[J]. Applied Physics B, 2013, 110(3):375-380.
    [29] Libbrecht K G. The physics of snow crystals[J]. Reports on Progress in Physics, 2005, 68(4):855-895.
    [30] Ju J J, Sun H Y, Hu X K, et al. Temporal evolution of condensation and precipitation induced by a 22-tw laser[J]. Optics Express, 2018, 26(3):2785-2793.
    [31] Leisner T, Duft D, Mohler O, et al. Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25):10106-10110.
    [32] Rabeony H, Mirabel P. Experimental study of vapor nucleation on ions[J]. Journal of Chemical Physics, 1987, 91(7):1815-1818.
    [33] Matthews M, Pomel F, Wender C, et al. Laser vaporization of cirrus-like ice particles with secondary ice multiplication[J]. Science Advances, 2016, 2(5):e1501912-e1501919.
    [34] Petit Y, Henin S, Kasparian J, et al. Influence of pulse duration, energy, and focusing on laser-assisted water condensation[J]. Applied Physics Letters, 2011, 98(4):041105-041108.
    [35] Petrarca M, Henin S, Stelmaszczyk K, et al. Multijoule scaling of laser-induced condensation in air[J]. Applied Physics Letters, 2011, 99(14):141103-141106.
    [36] Sun H Y, Liang H, Liu Y H, et al. Differently patterned airflows induced by 1-kHz femtosecond laser filaments in a cloud chamber[J]. Applied Physics B, 2015, 121(2):155-169.
    [37] Silaeva E P, Shlenov S A, Kandidov V P. Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol[J]. Applied Physics B, 2010, 101(1-2):393-401.
    [38] Point G, Thouin E, Mysyrowicz A, et al. Energy deposition from focused terawatt laser pulses in air undergoing multiflamentation[J]. Optics Express, 2016, 24(6):6271-6282.
    [39] Gateau J, Patas A, Matthews M, et al. Maximizing energy deposition by shaping few-cycle laser pulses[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 2018, arxiv:1806.08994v1.
  • [1] 林素颖, 廖小杰, 韩冰.  纳秒激光诱导聚酰亚胺薄膜周期性结构的产生 . 红外与激光工程, 2022, 51(2): 20210911-1-20210911-7. doi: 10.3788/IRLA20210911
    [2] 曾庆伟, 刘磊, 胡帅, 李书磊, 陈鸣.  基于多元线性阵列探测器的飞秒激光成丝光声图像重建 . 红外与激光工程, 2022, 51(8): 20210774-1-20210774-9. doi: 10.3788/IRLA20210774
    [3] 钱俊宇, 彭宇杰, 李妍妍, 黎文开, 冯壬誉, 沈丽雅, 冷雨欣.  中红外超强超短激光研究进展(特邀) . 红外与激光工程, 2021, 50(8): 20210456-1-20210456-10. doi: 10.3788/IRLA20210456
    [4] 马维喆, 董美蓉, 黄泳如, 童琪, 韦丽萍, 陆继东.  激光诱导击穿光谱的飞灰碳含量定量分析方法 . 红外与激光工程, 2021, 50(9): 20200441-1-20200441-10. doi: 10.3788/IRLA20200441
    [5] 王可, 秦艳, 韩佳岐, 管爽, 马彬.  纳秒激光诱导透射元件粒子喷射的分布特征 . 红外与激光工程, 2020, 49(11): 20200065-1-20200065-8. doi: 10.3788/IRLA20200065
    [6] 王华丰, 孙轲, 孙盛芝, 邱建荣.  飞秒激光诱导金刚石微纳结构及其应用(特邀) . 红外与激光工程, 2020, 49(12): 20201057-1-20201057-11. doi: 10.3788/IRLA20201057
    [7] 赵万芹, 梅雪松, 王文君.  超短脉冲激光微孔加工(下)——实验探索 . 红外与激光工程, 2019, 48(2): 242001-0242001(12). doi: 10.3788/IRLA201948.0242001
    [8] 赵万芹, 梅雪松, 王文君.  超短脉冲激光微孔加工(上)——理论研究 . 红外与激光工程, 2019, 48(1): 106008-0106008(9). doi: 10.3788/IRLA201948.0106008
    [9] 黄亚军, 蔡文莱, 陈英怀, 黄志刚.  纳秒激光诱导铜箔喷射机制的研究 . 红外与激光工程, 2019, 48(2): 206003-0206003(7). doi: 10.3788/IRLA201948.0206003
    [10] 赵力杰, 周艳宗, 夏海云, 武腾飞, 韩继博.  飞秒激光频率梳测距综述 . 红外与激光工程, 2018, 47(10): 1006008-1006008(16). doi: 10.3788/IRLA201847.1006008
    [11] 粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞.  超短脉冲光纤激光相干合成(特邀) . 红外与激光工程, 2018, 47(1): 103001-0103001(19). doi: 10.3788/IRLA201847.0103001
    [12] 李志明, 王玺, 聂劲松, 胡瑜泽.  飞秒激光诱导硅表面高频周期结构 . 红外与激光工程, 2018, 47(1): 106003-0106003(6). doi: 10.3788/IRLA201847.0106003
    [13] 胡瑜泽, 聂劲松, 孙可, 王磊.  不同能量背景的环形艾里飞秒激光光束大气成丝特性 . 红外与激光工程, 2017, 46(8): 806005-0806005(7). doi: 10.3788/IRLA201746.0806005
    [14] 杨成娟, 梅雪松, 王文君, 田延岭, 张大卫, 崔良玉.  皮秒激光功率变化对激光诱导晶体硅变化的影响 . 红外与激光工程, 2016, 45(1): 106006-0106006(7). doi: 10.3788/IRLA201645.0106006
    [15] 刘伟伟, 赵佳宇, 张逸竹, 王志, 储蔚, 曾斌, 程亚.  飞秒激光成丝过程中的太赫兹波超光速传输现象研究 . 红外与激光工程, 2016, 45(4): 402001-0402001(7). doi: 10.3788/IRLA201645.0402001
    [16] 赵中华, 辛海燕, 王晓宇.  激光诱导声信号通信技术的初步研究 . 红外与激光工程, 2015, 44(3): 863-866.
    [17] 杨晶, 赵佳宇, 郭兰军, 刘伟伟.  超快激光成丝产生太赫兹波的研究 . 红外与激光工程, 2015, 44(3): 996-1007.
    [18] 陈金忠, 王敬, 李旭, 滕枫.  样品温度对激光诱导等离子体辐射强度的影响 . 红外与激光工程, 2015, 44(11): 3223-3228.
    [19] 高永利, 何旭, 李红梅, 刘凤山, 李向荣, 刘福水.  激光能量密度对激光诱导炽光技术测试碳烟粒径的影响 . 红外与激光工程, 2014, 43(8): 2425-2430.
    [20] 田秀芹, 肖思, 陶少华, 袁战忠, 周炎强.  飞秒超短脉冲激光对硅太阳能电池的损伤阈值研究 . 红外与激光工程, 2014, 43(3): 676-680.
  • 加载中
计量
  • 文章访问数:  361
  • HTML全文浏览量:  57
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2018-12-28
  • 刊出日期:  2019-04-25

飞秒激光成丝诱导形成水凝物的机理研究进展

doi: 10.3788/IRLA201948.0406002
    作者简介:

    曾庆伟(1990-),男,博士生,主要从事飞秒强激光大气应用方面的研究。Email:zengqingwei519@yahoo.com

基金项目:

国家自然科学基金(41575024)

  • 中图分类号: TN249

摘要: 近些年,飞秒激光成丝诸多非线性效应及其潜在应用逐渐成为超短脉冲激光领域研究的重要方向之一。飞秒激光成丝诱导水汽凝结、降雪和破碎冰晶二次增长等方面的探索研究,为人类寻找主动控制天气的新技术指明了方向,具有重要的科学意义和应用前景。首先,重点分析梳理了飞秒激光成丝诱导形成水凝物的观测和机理研究进展;然后,讨论了飞秒激光诱导水凝物形成机理研究中尚待解决的关键科学问题,以及对该领域未来发展方向做了展望。

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回