留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型光谱测量技术发展综述

柏连发 王旭 韩静 赵壮

柏连发, 王旭, 韩静, 赵壮. 新型光谱测量技术发展综述[J]. 红外与激光工程, 2019, 48(6): 603001-0603001(11). doi: 10.3788/IRLA201948.0603001
引用本文: 柏连发, 王旭, 韩静, 赵壮. 新型光谱测量技术发展综述[J]. 红外与激光工程, 2019, 48(6): 603001-0603001(11). doi: 10.3788/IRLA201948.0603001
Bai Lianfa, Wang Xu, Han Jing, Zhao Zhuang. Development review of new spectral measurement technology[J]. Infrared and Laser Engineering, 2019, 48(6): 603001-0603001(11). doi: 10.3788/IRLA201948.0603001
Citation: Bai Lianfa, Wang Xu, Han Jing, Zhao Zhuang. Development review of new spectral measurement technology[J]. Infrared and Laser Engineering, 2019, 48(6): 603001-0603001(11). doi: 10.3788/IRLA201948.0603001

新型光谱测量技术发展综述

doi: 10.3788/IRLA201948.0603001
基金项目: 

国家重大科研仪器研制项目(61727802)

详细信息
    作者简介:

    柏连发(1965-),男,教授,博士生导师,博士,主要从事光电成像探测与数字图像处理方面的研究。Email:blf@njust.edu.cn

    通讯作者: 赵壮(1990-),男,博士后,主要从事光谱探测与数据处理方面的研究。Email:zhaozhuang3126@gmail.com
  • 中图分类号: O433.1

Development review of new spectral measurement technology

  • 摘要: 光谱测量技术在无损检测、地质勘探、农业普查等诸多方面均有广泛应用,且随着技术的发展,相关工艺器件近几年得到了长足的进步。在结合实际应用需求的前提下,比较全面地介绍了光谱测量技术的发展历史,以及近年来相关技术的研究现状和发展动态。并且从传统型、计算型、多路复用型三个角度较详细地总结了目前光谱测量的主要形式。着重介绍了包括计算层析、压缩感知、傅里叶变换、哈达码变换等多种光谱测量技术的原理及实现方法,并分别总结了优缺点。对目前光谱测量技术中亟待解决的问题进行了分析总结,对未来光谱测量手段的发展进行了展望。
  • [1] Zhao Z, Deng L, Bai L, et al. Optimal imaging band selection mechanism of weld pool vision based on spectrum analysis[J]. Optics Laser Technology, 2019, 110:145-151.
    [2] Sperling Brent A, John Hoang, William A Kimes, et al. Time-resolved surface infrared spectroscopy during atomic layer deposition[J]. Applied Spectroscopy, 2013, 67(9):1003-1012.
    [3] Yoshida Y, Oguma H, Morino I, et al. Mountaintop observation of CO2 absorption spectra using a short wavelength infrared Fourier transform spectrometer[J]. Applied Optics, 2010, 49(1):71-79.
    [4] O'brien C M, Vargis E, Rudin A, et al. In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy[J]. American Journal of Obstetrics and Gynecology, 2018, 218(5):528.e.
    [5] Ai Y, Liang P, Wu Y, et al. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS)[J]. Food Chemistry, 2018, 241:427-433.
    [6] Golay M J E. Multi-slit spectrometry[J]. Journal of the Optical Society of America, 1949, 39(6):437-444.
    [7] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
    [8] Labaw C. Airborne imaging spectrometer:an advanced concept instrument[C]//Proceedings of SPIE, 1984, 430:68-75.
    [9] Green R O, Chrien T G, Nielsen P J, et al. Airborne visible/infrared imaging spectrometer (AVIRIS):recent improvements to the sensor and data facility[C]//Proceedings of SPIE, 1993, 1937:180-190.
    [10] Babey S K, Anger C D. Compact airborne spectrographic imager (CASI):a progress review[C]//Proceedings of SPIE, 1993, 1937:152-164.
    [11] Braam B M, Okkonen J T, Aikio M, et al. Design and first test results of the Finnish airborne imaging spectrometer for different applications (AISA)[C]//Proceedings of SPIE, 1993, 1937:142-152.
    [12] Rickard L J, Basedow R W, Zalewski E F, et al. HYDICE:An airborne system for hyperspectral imaging[C]//Proceedings of SPIE, 1993, 1937:173-180.
    [13] Shimota A, Kobayashi H, Kadokura S. Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator[J]. Applied Optics, 1999, 38(3):571-576.
    [14] Cocks T, Jenssen R, Stewart A, et al. The HyMapTM airborne hyperspectral sensor:the system, calibration and performance[C]//Proc of the 1st EarseL workshop on Imaging Spectroscopy, 1998, 5:37-42.
    [15] Agar B, Coulter D. Remote sensing for mineral exploration-A decade perspective 1997-2007[C]//Proceedings of Exploration, 2007, 7:109-136.
    [16] Barnsley M J, Settle J J, Cutter M A, et al. The PROBA/CHRIS mission:A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1512-1520.
    [17] Tong Qingxi, Zhang Bing, Zheng Lan. Hyperspectral Remote Sensing[M]. Beijing:Higher Education Press, 2006. (in Chinese)
    [18] Gao Hengzhen. Research on classification technique for Hyperspectral remote sensing imagery[D]. Changsha:National University of Defense Technology, 2011. (in Chinese)
    [19] Han Z, Jin Y, Yun C. Spatial and temporal distributions of suspended sediment contents in the Yangtze River Estuary using the CMODIS image data from China's SZ-3 Spacecraft[J]. Journal of Remote Sensing, 2006, 10(3):381-386. (in Chinese)
    [20] Zhao B, Yang J, Chang L, et al. Optical design and on-orbit performance evaluation of the imaging spectrometer for Chang'e-1 lunar satellite[J]. Acta Photonica Sinica, 2009, 38(3):479-483. (in Chinese)
    [21] Descour M, Dereniak E. Computed-tomography imaging spectrometer:experimental calibration and reconstruction results[J]. Applied Optics, 1995, 34(22):4817-4826.
    [22] Cimino P, Neese F, Barone V. Computational spectroscopy:methods, experiments and applications[J]. Materialstoday, 2010, 13(2):55.
    [23] Wei R, Zhou J, Jing J, et al. Developments and trends of the computed tomography imaging spectrometers[J].Spectroscopy and Spectral Analysis, 2010, 30(10):2866-2873. (in Chinese)
    [24] Okamoto T, Yamaguchi I. Simultaneous acquisition of spectral image information[J]. Optics Letters, 1991, 16(16):1277-1279.
    [25] Mooney J M, Vickers V E, An M, et al. High-throughput hyperspectral infrared camera[J]. Journal of the Optical Society of America A, 1997, 14(11):2951-2961.
    [26] Fang J, Zhao D, Jiang Y. A new method in imaging spectrometry[C]//Proceedings of SPIE, 2002, 4922:56-62.
    [27] Hagen N, Dereniak E L. Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution[J]. Applied Optics, 2008, 47(28):F85-F95.
    [28] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
    [29] Cands E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509.
    [30] Brady D J, Gehm M E. Compressive imaging spectrometers using coded apertures[C]//Visual Information Processing, 2006, 6246:62460A.
    [31] Gehm M E, John R, Brady D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21):14013-14027.
    [32] Wagadarikar A, John R, Willett R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10):B44-B51.
    [33] Galvis L, Arguello H, Arce G R. Coded aperture design in mismatched compressive spectral imaging[J]. Applied Optics, 2015, 52(10):2153-2162.
    [34] Parada A, Arce G R. Spectral Super-resolution in colored coded aperture spectral imaging[J]. Imaging and Applied Optics, 2015, 2(4):440-455.
    [35] Ma Y, Lv Q, Liu Y, et al. Effect evaluation of optical magnification errors for coded aperture spectrometer[J]. Spectroscopy and Spectral Analysis, 2014, 34(11):3157-3161. (in Chinese)
    [36] Lou J, Li Y, Xiong L. Catadioptric omnidirectional compressive imaging based on coded aperture[J]. Acta Optica Sinica, 2016, 36(4):0411004. (in Chinese)
    [37] Kazemzadeh F, Wong A. Resolution-and throughput-enhanced spectroscopy using a high-throughput computational slit[J]. Optics Letters, 2016, 41(18):4352-4355.
    [38] Ma X, Wang H, Wang Y, et al. Improving the resolution and the throughput of spectrometers by a digital projection slit[J]. Optics Express, 2017, 25(19):23045-23050.
    [39] Yue J, Han J, Zhang Y, et al. High-throughput deconvolution-resolved computational spectrometer[J]. Chinese Optics Letters, 2014, 12(4):043001.
    [40] Gehm M E, McCain S T, Pitsianis N P, et al. Static two-dimensional aperture coding for multimodal, multiplex spectroscopy[J]. Applied Optics, 2006, 45(13):2965-2974.
    [41] Fernandez C A, Guenther B D, Gehm M E, et al. Longwave infrared (LWIR) coded aperture dispersive spectrometer[J]. Optics Express, 2007, 15(9):5742-5753.
    [42] Zhou Y, Rushforth C K. Least-squares reconstruction of spatially limited objects using smoothness and non-negativity constraints[J]. Applied Optics, 1982, 21(7):1249-1252.
    [43] Wagadarikar A A, Gehm M E, Brady D J. Performance comparison of aperture codes for multimodal, multiplex spectroscopy[J]. Applied Optics, 2007, 46(22):4932-4942.
    [44] Kong Y, Liang J, Wang B, et al. The investigation and simulation of a novel spatially modulated micro-fourier transform spectrometer[J]. Spectroscopy and Spectral Analysis, 2009, 29(4):1142-1146.
    [45] Lv J, Liang J, Liang Z. Theoretical analysis on stationary Gaussian random noise in narrowband Fourier transform spectrometer[J]. Acta Physica Sinica, 2012, 61(7):89-96. (in Chinese)
    [46] Jin W, Liang J, Liang Z, et al. Development of micro fourier transform spectrometer[J]. Microprocessors, 2017, 38(3):52-59. (in Chinese)
    [47] Courtial J, Patterson B A, Harvey A R, et al. Design of a static Fourier-transform spectrometer with increased field of view[J]. Applied Optics, 1996, 35(34):6698-6702.
    [48] Zhan G. Static Fourier-transform spectrometer with spherical reflectors[J]. Applied Optics, 2002, 41(3):560-563.
    [49] Wang H, Lv J, Liang J, et al. Design and analysis of medium wave infrared miniature atatic Fourier transform spectrometer[J]. Acta Physica Sinica, 2018, 67(6):060702. (in Chinese)
    [50] Li W, Lu Q, Song Y, et al. Reflective static fourier spectrometer optical system based on double right-angle beam splitter[J]. Acta Optica Sinica, 2017, 37(8):0812004. (in Chinese)
    [51] Li J, Lu D, Qi Z. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution[J]. Acta Physica Sinica, 2014, 64(11):114207. (in Chinese)
    [52] Hammaker R M, DeVerse R A, Asunskis D J, et al. Handbook of Vibrational Spectroscopy[M]. New Jersey:John Wiley Sons, Ltd, 2006.
    [53] Rose B, Rasmussen M, Herholdt-Rasmussen N, et al. Programmable spectroscopy enabled by DLP[C]//Proceedings of SPIE, 2015, 9376:93760I.
    [54] Xu J, Zhu Z, Liu C, et al. The processing method of spectral data in Hadamard transforms spectral imager based on DMD[J]. Optics Communications, 2014, 325:122-128.
    [55] Zhang H. Research on key technologies for coded aperture imaging spectrometer based on DMD[D]. Beijing:University of Chinese Academy of Science, 2016. (in Chinese)
    [56] Zhang R, Pan M, Yang J, et al. Optical system of echelle spectrometer based on DMD[J]. Optics and Precision Engineering, 2017, 25(12):2994-3000. (in Chinese)
    [57] Xu J, Liu Z, Jiang N, et al. Hadamard transform spectral imager of adaptive spectral resolution based on DMD[J]. Spectroscopy and Spectral Analysis, 2013, 33(7):2006-2009. (in Chinese)
    [58] Love S P, Graff D L. Full-frame programmable spectral filters based on micromirror arrays[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2014, 13(1):011108.
    [59] Chi M, Wu Y, Qian F, et al. Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array[J]. Applied Optics, 2017, 56(25):7188-7193.
    [60] Wang Z, Yue J, Han J, et al. High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction[J]. Applied Physics B, 2017, 123(12):277-284.
    [61] Yue J, Han J, Zhang Y, et al. Denoising analysis of Hadamard transform spectrometry[J]. Optics Letters, 2014, 39(13):3744-3747.
    [62] Yue J, Han J, Li L, et al. Denoising analysis of spatial pixel multiplex coded spectrometer with Hadamard H-matrix[J]. Optics Communications, 2018, 407:355-360.
  • [1] 徐亦静, 吴志鹏, 王琦龙.  光谱域编码的压缩光谱测量技术 . 红外与激光工程, 2022, 51(11): 20220093-1-20220093-17. doi: 10.3788/IRLA20220093
    [2] 张赛文, 邓亚琦, 王冲, 冷潇泠, 张光富, 文兵, 邓杨保, 谭伟石, 田野, 李稳国.  基于多测量矢量压缩感知的超分辨荧光显微成像研究 . 红外与激光工程, 2021, 50(11): 20210484-1-20210484-8. doi: 10.3788/IRLA20210484
    [3] 赵媛媛, 肖作江, 梁旭.  基于光谱干涉技术的玻璃厚度及折射率测量方法 . 红外与激光工程, 2020, 49(2): 0213004-0213004. doi: 10.3788/IRLA202049.0213004
    [4] 由四海, 王宏力, 冯磊, 何贻洋, 许强.  基于小波变换与压缩感知的脉冲星TOA估计 . 红外与激光工程, 2020, 49(2): 0226001-0226001. doi: 10.3788/IRLA202049.0226001
    [5] 穆竺, 王加科, 吴从均, 颜昌翔, 刘智颖.  偏振光谱识别光学系统的复原方法与设计 . 红外与激光工程, 2019, 48(5): 518004-0518004(8). doi: 10.3788/IRLA201948.0518004
    [6] 尹红飞, 郭亮, 周煜, 孙剑锋, 曾晓东, 唐禹, 邢孟道.  基于改进SVA和压缩感知的SAL旁瓣抑制算法 . 红外与激光工程, 2018, 47(12): 1230005-1230005(8). doi: 10.3788/IRLA201847.1230005
    [7] 王忠良, 冯文田, 粘永健.  结合光谱解混与压缩感知的高光谱图像有损压缩 . 红外与激光工程, 2018, 47(S1): 189-196. doi: 10.3788/IRLA201847.S126003
    [8] 柏财勋, 李建欣, 周建强, 刘勤, 徐文辉.  基于微偏振阵列的干涉型高光谱偏振成像方法 . 红外与激光工程, 2017, 46(1): 136003-0136003(6). doi: 10.3788/IRLA201746.0138003
    [9] 申艳, 解颐, 娄淑琴, 王鑫, 赵彤彤.  基于Contourlet变换和压缩感知的实际光子晶体光纤光 . 红外与激光工程, 2017, 46(3): 321001-0321001(7). doi: 10.3788/IRLA201746.0321001
    [10] 杨新锋, 张金娜, 滕书华, 崔宇.  利用压缩感知实现随机变频雷达散射中心估计 . 红外与激光工程, 2016, 45(5): 526004-0526004(6). doi: 10.3788/IRLA201645.0526004
    [11] 王芳, 仇大剑, 夏红岩, 宝日玛, 任慧.  太赫兹时域光谱技术在识别鉴定菌制剂中的初探 . 红外与激光工程, 2016, 45(7): 703001-0703001(7).
    [12] 肖相国, 张栓民, 陈秀萍.  基于Mach-Zehnder的像面相交干涉成像光谱技术 . 红外与激光工程, 2016, 45(5): 524001-0524001(4). doi: 10.3788/IRLA201645.0524001
    [13] 赵爱罡, 王宏力, 杨小冈, 陆敬辉, 何星.  融合几何特征的压缩感知SIFT描述子 . 红外与激光工程, 2015, 44(3): 1085-1091.
    [14] 殷世民, 梁永波, 朱健铭, 梁晋涛, 陈真诚.  傅里叶变换红外成像光谱仪实时光谱复原FPGA芯片系统研究 . 红外与激光工程, 2015, 44(12): 3580-3586.
    [15] 张毅, 王勇, 岳江, 柏连发.  DMD编码哈达玛变换高灵敏成像 . 红外与激光工程, 2015, 44(12): 3819-3824.
    [16] 尹继豪, 孙建颖.  基于压缩感知理论的波段重构方法 . 红外与激光工程, 2014, 43(4): 1260-1264.
    [17] 关丛荣, 金伟其, 王吉晖.  小波变换在显微热图像位移估计中的应用 . 红外与激光工程, 2014, 43(8): 2780-2785.
    [18] 朱丰, 张群, 冯有前, 罗迎, 李开明, 梁必帅.  逆合成孔径激光雷达鸟类目标压缩感知识别方法 . 红外与激光工程, 2013, 42(1): 256-261.
    [19] 陈春利, 谢红梅, 彭进业, 王志成, 王保平.  压缩感知机动目标ISAR成像新方法 . 红外与激光工程, 2013, 42(8): 2269-2274.
    [20] 谭歆, 冯晓毅, 王保平.  稀疏带状测量矩阵在压缩感知ISAR成像中的应用 . 红外与激光工程, 2013, 42(11): 3137-3143.
  • 加载中
计量
  • 文章访问数:  790
  • HTML全文浏览量:  139
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-02-23
  • 刊出日期:  2019-06-25

新型光谱测量技术发展综述

doi: 10.3788/IRLA201948.0603001
    作者简介:

    柏连发(1965-),男,教授,博士生导师,博士,主要从事光电成像探测与数字图像处理方面的研究。Email:blf@njust.edu.cn

    通讯作者: 赵壮(1990-),男,博士后,主要从事光谱探测与数据处理方面的研究。Email:zhaozhuang3126@gmail.com
基金项目:

国家重大科研仪器研制项目(61727802)

  • 中图分类号: O433.1

摘要: 光谱测量技术在无损检测、地质勘探、农业普查等诸多方面均有广泛应用,且随着技术的发展,相关工艺器件近几年得到了长足的进步。在结合实际应用需求的前提下,比较全面地介绍了光谱测量技术的发展历史,以及近年来相关技术的研究现状和发展动态。并且从传统型、计算型、多路复用型三个角度较详细地总结了目前光谱测量的主要形式。着重介绍了包括计算层析、压缩感知、傅里叶变换、哈达码变换等多种光谱测量技术的原理及实现方法,并分别总结了优缺点。对目前光谱测量技术中亟待解决的问题进行了分析总结,对未来光谱测量手段的发展进行了展望。

English Abstract

参考文献 (62)

目录

    /

    返回文章
    返回