留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单像素成像中的光信息编码与解码

邓超 索津莉 张志利 戴琼海

邓超, 索津莉, 张志利, 戴琼海. 单像素成像中的光信息编码与解码[J]. 红外与激光工程, 2019, 48(6): 603004-0603004(11). doi: 10.3788/IRLA201948.0603004
引用本文: 邓超, 索津莉, 张志利, 戴琼海. 单像素成像中的光信息编码与解码[J]. 红外与激光工程, 2019, 48(6): 603004-0603004(11). doi: 10.3788/IRLA201948.0603004
Deng Chao, Suo Jinli, Zhang Zhili, Dai Qionghai. Coding and decoding of optical information in single-pixel imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 603004-0603004(11). doi: 10.3788/IRLA201948.0603004
Citation: Deng Chao, Suo Jinli, Zhang Zhili, Dai Qionghai. Coding and decoding of optical information in single-pixel imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 603004-0603004(11). doi: 10.3788/IRLA201948.0603004

单像素成像中的光信息编码与解码

doi: 10.3788/IRLA201948.0603004
基金项目: 

国家自然科学基金(60277005)

详细信息
    作者简介:

    邓超(1990-),男,博士生,主要从事计算摄像学方面的研究。Email:deng-c15@mails.tsinghua.edu.cn

  • 中图分类号: TN911

Coding and decoding of optical information in single-pixel imaging

  • 摘要: 单像素成像旨在通过单个感光元件记录目标场景信息。由于其高灵敏度、宽谱段响应等良好的特性,单像素成像是近年来的研究热点。通过对高维光信号的编码采集与解码重构,单像素成像能够满足丰富的成像需求。介绍了单像素成像的研究背景,简述了其成像原理及重构算法,从光信息编码与解码角度系统回顾了单像素成像的研究现状和前沿技术。此外,还讨论了单像素成像技术中存在的问题,以及未来可能的研究方向与应用。
  • [1] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Appl Phys Lett, 2012, 101(14):141123.
    [2] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Appl Phys Lett, 2011, 98(11):111115.
    [3] Magana-Loaiza O S, Howland G A, Malik M, et al. Compressive object trackingusing entangled photons[J]. Appl Phys Lett, 2013, 102(23):231104.
    [4] Clemente P, Durn V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging[J]. Opt Lett, 2010, 35(14):2391-2393.
    [5] Tian N, Guo Q, Wang A, et al. Fluorescence ghost imaging with pseudothermallight[J]. Optics Letters, 2011, 36(16):3302-3304.
    [6] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixeldetectors[J]. Science, 2013, 340(6134):844-847.
    [7] Pittman T, Shih Y, Strekalov D, et al. Optical imaging by means of two-photonquantum entanglement[J]. Phys Rev A, 1995, 52(5):R3429.
    [8] Strekalov D, Sergienko A, Klyshko D, et al. Observation of two-photon ghost interference and diffraction[J]. Phys Rev Lett, 1995, 74(18):3600.
    [9] Bennink R S, Bentley S J, Boyd R W. Two-photon coincidence imaging witha classical source[J]. Phys Rev Lett, 2002, 89(11):113601.
    [10] Valencia A, Scarcelli G, D'Angelo M, et al. Two-photon imaging with thermallight[J]. Phys Rev Lett, 2005, 94(6):063601.
    [11] GattiA, Brambilla E, Bache M, et al. Ghost imaging with thermal light:comparing entanglement and classicalcorrelation[J]. Phys Rev Lett, 2004, 93(9):093602.
    [12] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with truethermal light[J]. Opt Lett, 2005, 30(18):2354-2356.
    [13] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghostdiffraction experiments with thermal light[J]. Physical Review Letters, 2005, 94(18):183602.
    [14] Shapiro J H. Computational ghost imaging[J]. Phys Rev A, 2008, 78(6):061802.
    [15] Takhar D, Laska J N, Wakin M B, et al. A new compressive imaging cameraarchitecture using optical-domain compression[C]//Computational Imaging IV, 2006, 6065:606509.
    [16] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5):053840.
    [17] Gong W, Han S. A method to improve the visibility of ghost images obtained by thermal light[J]. Physics Letters A, 2010, 374(8):1005-1008.
    [18] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25):253603.
    [19] Sun B, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15):16892-16901.
    [20] Deng C, Suo J, Wang Y, et al. Single-shot thermal ghost imaging usingwavelength-division multiplexing[J]. Appl Phys Lett, 2018, 112(5):051107.
    [21] Guo K, Jiang S, Zheng G. Multilayer fluorescence imaging on a single-pixeldetector[J]. Biomed Opt Express, 2016, 7(7):2425-2431.
    [22] Wang W, Hu X, Liu J, et al. Gerchberg-Saxton-like ghost imaging[J]. Optics Express, 2015, 23(22):28416-28422.
    [23] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Appl Phys Lett, 2009, 95(13):131110.
    [24] Amann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 2013, 3:1545.
    [25] Cands E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30.
    [26] Adelson E H, Bergen J R. The plenoptic function and the elements of early vision[J]. Computational Models of Visual Processing, 1991:3-20.
    [27] Clemente P, Durn V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 2013, 38(14):2524-2527.
    [28] Kandjani S A, Kheradmand R, Dadashzadeh N. Ghost imaging with pseudo-thermal light[C]//201113th International Conference on Transparent Optical Networks. IEEE, 2011:1-4.
    [29] Durn V, Clemente P, Fernndez-Alonso M, et al. Single-pixel polarimetric imaging[J]. Optics Letters, 2012, 37(5):824-826.
    [30] Soldevila F, Irles E, Durn V, et al. Single-pixel polarimetric imaging spectrometer by compressive sensing[J]. Applied Physics B, 2013, 113(4):551-558.
    [31] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013, 21(10):12507-12518.
    [32] Soldevila F, Salvador-Balaguer E, Clemente P, et al. High-resolution adaptive imaging with a single photodiode[J]. Scientific Reports, 2015, 5:14300.
    [33] Yu W K, Liu X F, Yao X R, et al. Complementary compressive imaging for the telescopic system[J]. Scientific Reports, 2014, 4:5834.
    [34] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain[J]. Nature Photonics, 2016, 10(3):167.
    [35] Ikeuchi K. Determining surface orientations of specular surfaces by using the photometric stereo method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981(6):661-669.
    [36] Woodham R J. Photometric stereo:A reflectance map technique for determining surface orientation from image intensity[C]//Image Understanding Systems and Industrial Applications I, 1979, 155:136-144.
    [37] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134):844-847.
    [38] Abramson N. Light-in-flight recording by holography[J]. Optics Letters, 1978, 3(4):121-123.
    [39] Heide F, Hullin M B, Gregson J, et al. Low-budget transient imaging using photonic mixer devices[J]. ACM Transactions on Graphics (ToG), 2013, 32(4):45.
    [40] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7:12010.
    [41] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013, 21(10):12507-12518.
    [42] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12):121105.
    [43] Greenberg J, Krishnamurthy K, Brady D. Compressive single-pixel snapshot x-ray diffraction imaging[J]. Optics Letters, 2014, 39(1):111-114.
    [44] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5):285-289.
    [45] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 2015(5):10669.
    [46] Tanha M, Kheradmand R, Ahmadi-Kandjani S. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 2012, 101(10):101108.
    [47] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 2014, 39(8):2314-2317.
    [48] Duan D, Du S, Xia Y. Multiwavelength ghost imaging[J]. Physical Review A, 2013, 88(5):053842.
    [49] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016(6):24752.
    [50] Wang Y, Suo J, Fan J, et al. Hyperspectral computational ghost imaging via temporal multiplexing[J]. IEEE Photonics Technology Letters, 2016, 28(3):288-291.
    [51] Liu Z, Tan S, Wu J, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 2016(6):25718.
    [52] Goda K, Tsia K, Jalali B. Serial time-encoded amplified imaging for real-timeobservation of fast dynamic phenomena[J]. Nature, 2009, 458(7242):1145.
    [53] Morris P A, Aspden R S, Bell J E C, et al. Imaging with a small number of photons[J]. Nature Communications, 2015, 6:5913.
    [54] Tajahuerce E, Durn V, Clemente P, et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Optics Express, 2014, 22(14):16945-16955.
    [55] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 2011, 98(11):111115.
    [56] Zerom P, Shi Z, O'Sullivan M N, et al. Thermal ghost imaging with averaged speckle patterns[J]. Physical Review A, 2012, 86(6):063817.
    [57] Dixon P B, Howland G A, Chan K W C, et al. Quantum ghost imaging through turbulence[J]. Physical Review A, 2011, 83(5):051803.
    [58] Magana-Loaiza O S, Howland G A, Malik M, et al. Compressive object tracking using entangled photons[J]. Applied Physics Letters, 2013, 102(23):231104.
    [59] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 2015(6):6225.
    [60] Henriques R, Griffiths C, Hesper Rego E, et al. PALM and STORM:Unlocking live-cell super-resolution[J]. Biopolymers, 2011, 95(5):322-331.
    [61] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086):935.
    [62] Kner P, Chhun B B, Griffis E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5):339.
    [63] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739.
    [64] Ghanbari-Ghalehjoughi H, Ahmadi-Kandjani S, Eslami M. High quality computational ghost imaging using multi-fluorescent screen[J]. JOSA A, 2015, 32(2):323-328.
    [65] Pian Q, Yao R, Zhao L, et al. Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection[J]. Optics Letters, 2015, 40(3):431-434.
    [66] Deng C, Suo J, Wang Y, et al. Single-shot thermal ghost imaging usingwavelength-division multiplexing[J]. Applied Physics Letters, 2018, 112(5):051107.
    [67] Deng C, Hu X, Li X, et al. High fidelity single-pixel imaging[J]. IEEE Photonics Journal, 2019, 11(2):1.
  • [1] 杨旭, 冉悦, 周伟, 徐宝腾, 刘家林, 杨西斌.  全彩单像素内窥成像系统 . 红外与激光工程, 2023, 52(10): 20230077-1-20230077-8. doi: 10.3788/IRLA20230077
    [2] 陆秋萍, 石岩, 戴晟昕, 陈义, 赵春柳, 赵天琦, 金尚忠, 牛海彬.  生物组织单像素成像重构的散射干扰抑制 . 红外与激光工程, 2022, 51(3): 20210722-1-20210722-7. doi: 10.3788/IRLA20210722
    [3] 熊乙宁, 鄢秋荣, 祝志太, 蔡源鹏, 杨耀铭.  用于光子计数单像素成像的去块状采样网络 . 红外与激光工程, 2021, 50(12): 20210724-1-20210724-10. doi: 10.3788/IRLA20210724
    [4] 佘荣斌, 祝永乐, 刘文权, 鲁远甫, 李光元.  太赫兹单像素计算成像原理及其应用(特邀) . 红外与激光工程, 2021, 50(12): 20210717-1-20210717-19. doi: 10.3788/IRLA20210717
    [5] 查林彬, 时东锋, 黄见, 王英俭.  单像素几何矩探测运动物体定位技术(特邀) . 红外与激光工程, 2021, 50(12): 20211060-1-20211060-7. doi: 10.3788/IRLA20211060
    [6] 郑培霞, 刘亦辰, 刘宏超.  单像素成像与超表面成像(特邀) . 红外与激光工程, 2021, 50(12): 20211058-1-20211058-12. doi: 10.3788/IRLA20211058
    [7] 翟鑫亮, 吴晓燕, 孙艺玮, 石剑虹, 曾贵华.  单像素成像理论与方法(特邀) . 红外与激光工程, 2021, 50(12): 20211061-1-20211061-14. doi: 10.3788/IRLA20211061
    [8] 刘瑞丰, 赵书朋, 李福利.  单像素复振幅成像(特邀) . 红外与激光工程, 2021, 50(12): 20210735-1-20210735-16. doi: 10.3788/IRLA20210735
    [9] 廖兆琨, 王汉, 陈文, 孙鸣捷.  紧凑双光路单像素成像系统(特邀) . 红外与激光工程, 2021, 50(12): 20210723-1-20210723-7. doi: 10.3788/IRLA20210723
    [10] 石峰, 陆同希, 杨书宁, 苗壮, 杨晔, 张闻文, 何睿清.  噪声环境下基于单像素成像系统和深度学习的目标识别方法 . 红外与激光工程, 2020, 49(6): 20200010-1-20200010-8. doi: 10.3788/IRLA20200010
    [11] 姜宏志, 李宇曦, 赵慧洁.  单像素成像在三维测量中的应用 . 红外与激光工程, 2020, 49(3): 0303017-0303017-9. doi: 10.3788/IRLA202049.0303017
    [12] 孙宝清, 江山, 马艳洋, 蒋文杰, 殷永凯.  单像素成像在特殊波段及三维成像的应用发展 . 红外与激光工程, 2020, 49(3): 0303016-0303016-16. doi: 10.3788/IRLA202049.0303016
    [13] 李明飞, 阚宝玺, 霍娟, 阎璐, 刘院省.  水平大气环境34 km单像素成像实验 . 红外与激光工程, 2019, 48(9): 925002-0925002(6). doi: 10.3788/IRLA201948.0925002
    [14] 孙鸣捷, 张佳敏.  单像素成像及其在三维重建中的应用 . 红外与激光工程, 2019, 48(6): 603003-0603003(11). doi: 10.3788/IRLA201948.0603003
    [15] 张子邦, 陆天傲, 彭军政, 钟金钢.  傅里叶单像素成像技术与应用 . 红外与激光工程, 2019, 48(6): 603002-0603002(19). doi: 10.3788/IRLA201948.0603002
    [16] 时东锋, 黄见, 苑克娥, 王英俭, 谢晨波, 刘东, 朱文越.  空间编码复用散斑多信息融合关联成像(特邀) . 红外与激光工程, 2018, 47(5): 502001-0502001(8). doi: 10.3788/IRLA201847.0502001
    [17] 霍娟, 李明飞, 杨然, 赵连洁, 张安宁, 莫小范.  基于单像素探测器的高灵敏度近红外成像系统 . 红外与激光工程, 2016, 45(S1): 1-5. doi: 10.3788/IRLA201645.S104001
    [18] 陆智俊, 贲德, 毛博年.  资源限制型可重构并行信息处理方法 . 红外与激光工程, 2016, 45(11): 1126003-1126003(6). doi: 10.3788/IRLA201645.1126003
    [19] 于海, 万秋华, 杨守旺, 赵长海, 卢新然.  绝对式光电编码器动态误差采集系统 . 红外与激光工程, 2013, 42(7): 1809-1814.
    [20] 姜庆辉, 邱跃洪, 文延, 汪欢, 许维星.  AOTF偏振光谱成像数据采集系统设计 . 红外与激光工程, 2012, 41(1): 218-222.
  • 加载中
计量
  • 文章访问数:  805
  • HTML全文浏览量:  136
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-02-25
  • 刊出日期:  2019-06-25

单像素成像中的光信息编码与解码

doi: 10.3788/IRLA201948.0603004
    作者简介:

    邓超(1990-),男,博士生,主要从事计算摄像学方面的研究。Email:deng-c15@mails.tsinghua.edu.cn

基金项目:

国家自然科学基金(60277005)

  • 中图分类号: TN911

摘要: 单像素成像旨在通过单个感光元件记录目标场景信息。由于其高灵敏度、宽谱段响应等良好的特性,单像素成像是近年来的研究热点。通过对高维光信号的编码采集与解码重构,单像素成像能够满足丰富的成像需求。介绍了单像素成像的研究背景,简述了其成像原理及重构算法,从光信息编码与解码角度系统回顾了单像素成像的研究现状和前沿技术。此外,还讨论了单像素成像技术中存在的问题,以及未来可能的研究方向与应用。

English Abstract

参考文献 (67)

目录

    /

    返回文章
    返回