留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计算光学成像在散射中的应用

郑珊珊 杨婉琴 司徒国海

郑珊珊, 杨婉琴, 司徒国海. 计算光学成像在散射中的应用[J]. 红外与激光工程, 2019, 48(6): 603005-0603005(15). doi: 10.3788/IRLA201948.0603005
引用本文: 郑珊珊, 杨婉琴, 司徒国海. 计算光学成像在散射中的应用[J]. 红外与激光工程, 2019, 48(6): 603005-0603005(15). doi: 10.3788/IRLA201948.0603005
Zheng Shanshan, Yang Wanqin, Situ Guohai. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 2019, 48(6): 603005-0603005(15). doi: 10.3788/IRLA201948.0603005
Citation: Zheng Shanshan, Yang Wanqin, Situ Guohai. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 2019, 48(6): 603005-0603005(15). doi: 10.3788/IRLA201948.0603005

计算光学成像在散射中的应用

doi: 10.3788/IRLA201948.0603005
基金项目: 

中国科学院前沿科学重点研究计划(QYZDB-SSW-JSC002);中德科学中心中德合作小组项目(GZ1391)

详细信息
    作者简介:

    郑珊珊(1994-),女,博士生,主要从事计算光学成像方面的研究。Email:ss_zheng@163.com

    通讯作者: 司徒国海(1978-),男,研究员,博士生导师,主要从事计算光学、散射成像、光信息处理等方面的研究。Email:ghsitu@siom.ac.cn
  • 中图分类号: O439

Application of computational optical imaging in scattering

  • 摘要: 自然界中普遍存在光散射现象。如何通过散射介质实现高分辨率成像是光学成像领域亟待解决的重要问题。在早期研究中,多重光散射被认为是雾霾、云层、生物组织等复杂介质成像中的障碍。然而,最近研究表明,散射并不是成像的基本限制:光子在经过多次散射后仍然包含了大量信息。为了深入了解新兴的计算光学成像是如何解决多重光散射问题的,文中主要介绍了波前整形、散斑相关及深度学习等方法在散射成像领域中的研究进展。最新的研究成果表明:波前整形可以实现动态散射介质内部的高分辨率快速聚焦;散斑相关能够利用单帧散斑实现非侵入式成像;基于深度学习的成像技术能恢复出隐藏在光学厚度为13.4的白色聚苯乙烯平板背后的物体。
  • [1] Wang L, Ho P P, Liu C, et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr Gate[J]. Science, 1991, 253(5021):769-771.
    [2] Anderson G E, Liu F, Alfano R R. Microscope imaging through highly scattering media[J]. Optics Letters, 1994, 19(13):981-983.
    [3] Kang S, Jeong S, Choi W, et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 2015, 9(4):253-258.
    [4] Guan J, Cheng Y, Chang G. Time-domain polarization difference imaging of objects in turbid water[J]. Optics Communication, 2017, 391:82-87.
    [5] Berrocal E, Kristensson E, Richter M, et al. Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays[J]. Optics Express, 2008, 16(22):17870-17881.
    [6] Sudarsanam S, Mathew J, Panigrahi S, et al. Real-time imaging through strongly scattering media:seeing through turbid media, instantly[J]. Scientific Reports, 2016, 6:25033.
    [7] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181.
    [8] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951):73-76.
    [9] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12):932-940.
    [10] Webb R H. Confocal optical microscopy[J]. Reports on Progress in Physics, 1996, 59:427-471.
    [11] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy:imaging molecules to embryos at high spatio temporal resolution[J]. Science, 2014, 346(6208):1257998.
    [12] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16):2309-2311.
    [13] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2:110-115.
    [14] Farrell T J, Patterson M S, Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties invivo[J]. Medical Physics, 1992, 19:879-888.
    [15] Wang L, Jacques S L, Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods Programs in Biomedicine, 1995, 47:131-146.
    [16] Popoff S, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10):100601.
    [17] Beenakker C W J. Random-matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69:731.
    [18] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5):283-292.
    [19] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront shaping methods for focusing light into biological tissue[J]. Nature Photonics, 2015, 9(9):563-571.
    [20] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9):12189-12206.
    [21] Yu H, Park J, Lee K, et al. Recent advances in wavefront shaping techniques for biomedical applications[J]. Current Applied Physics, 2015, 15(5):632-641.
    [22] Rotter S, Gigan S. Light fields in complex media:Mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 2017, 89(1):015005.
    [23] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 2012, 20(2):1733-1740.
    [24] Cui M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 2011,19(4):2989-2995.
    [25] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 2010, 18(4):3444-3455.
    [26] Hsieh C L, Pu Y, Grange R, et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 2010, 18(12):12283-12290.
    [27] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 2011, 5(3):154-157.
    [28] Wang Y M, Judkewitz B, Dimarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 2012, 3:928.
    [29] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 2012, 6(10):657-661.
    [30] Cizmr T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging[J]. Nature Communications, 2012, 3:1027.
    [31] Papadopoulos I N, Farahi S, Moser C, et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation[J]. Optics Express, 2012, 20(10):10583-10590.
    [32] Papadopoulos I N, Farahi S, Moser C, et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber[J]. Biomedical Optics Express, 2013, 4(2):260.
    [33] Ci?mr T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 2010, 4(6):388-394.
    [34] Van Putten E G, Akbulut D, Bertolotti J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19):193905.
    [35] Park J H, Park C, Yu H S, et al. Subwavelength light focusing using random nanoparticles[J]. Nature Photonics, 2013, 7(6):454-458.
    [36] Park C, Park J H, Rodriguez C, et al. Full-field subwavelength imaging using a scattering superlens[J]. Physical Review Letters, 2014, 113(11):113901.
    [37] Van Putten E G, Lagendijk A, Mosk A P. Nonimaging speckle interferometry for high-speed nanometer-scale position detection[J]. Optics Letters, 2012, 37(6):1070-1072.
    [38] Horstmeyer R, Judkewitz B, Vellekoop I M, et al. Physical key-protected one-time pad[J]. Scientific Reports, 2013, 3:3543.
    [39] Goorden S A, Horstmann M, Mosk A P, et al. Quantum-secure authentication of a physical unclonable key[J]. Optica, 2014, 1(6):421-424.
    [40] Akbulut D, Huisman T J, Van Putten E G, et al. Focusing light through random photonic media by binary amplitude modulation[J]. Optics Express, 2011, 19(5):4017-4029.
    [41] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 2008, 101(12):120601.
    [42] Vellekoop I M, Putten E G V, Lagendijk A, et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 2008, 16(1):67-80.
    [43] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy:imaging through turbid layers[J]. Optics Letters, 2010, 35(8):1245-1247.
    [44] Kong F, Silverman R H, Liu L, et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 2011, 36(11):2053-2055.
    [45] Caravaca-Aguirre A M, Conkey D B, Dove J D, et al. High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement[J]. Optics Express, 2013, 21(22):26671-26676.
    [46] Lai P, Wang L, Tay J W, et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9(2):126-132.
    [47] Bossy E, Gigan S. Photoacoustics with coherent light[J]. Photoacoustics, 2016, 4(1):22-35.
    [48] Yu Zhipeng, Li Huanhao, Lai Puxiang. Wavefront shaping and its application to enhance photoacoustic imaging[J]. Applied Science, 2017, 7(12):1320.
    [49] Tay J W, Lai P, Suzuki Y, et al. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 2014, 4:3918.
    [50] Katz O, Small E, Bromberg Y, et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 2011, 5(6):372-377.
    [51] Katz O, Small E, Guan Y, et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers[J]. Optica, 2014, 1(3):170-174.
    [52] Fiolka R, Si K, Cui M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered light[J]. Optics Express, 2012, 20(15):16532.
    [53] Jang J, Lim J, Yu H, et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography[J]. Optics Express, 2013, 21(3):2890-2902.
    [54] Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material[J]. Nature Communications, 2009, 1(6):81.
    [55] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6):870.
    [56] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10):100601.
    [57] Yu H, Hillman T R, Choi W, et al. Measuring large optical transmission matrices of disordered media[J]. Physical Review Letters, 2013, 111(15):153902.
    [58] Yoon J, Lee K R, Park J, et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 2015, 23(8):10158.
    [59] Lee K R, Park Y K. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 2016, 7:13359.
    [60] Yoonseok B, Kyeoreh L, Yongkeun P. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix[J]. Physical Review Applied, 2018, 10(2):024053.
    [61] Chaigne T, Katz O, Boccara A C, et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 2013, 8(1):58-64.
    [62] Jeong S, Lee Y R, Kang S, et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering[J]. Nature Photonics, 2018, 12:277-283.
    [63] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 1966, 56(4):523.
    [64] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 2016, 21(8):085001.
    [65] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 2012, 101(8):81108.
    [66] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 2010, 18:20723-20731.
    [67] Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000optical power gain[J]. Scientific Reports, 2015, 5:8896.
    [68] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1(4):227-232.
    [69] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 2014, 8(12):931-936.
    [70] Ruan H, Tom H, Yan L, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 2017, 4(11):1337-1343.
    [71] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 2017, 3(12):5520.
    [72] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11):3071-3080.
    [73] Yu H S, Lee K R, Park Y K. Ultrahigh enhancement of light focusing through disordered media controlled by megapixel modes[J]. Optics Express, 2017, 25(7):8036-8047.
    [74] Yan L, Cheng M, Yuecheng S, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 2017, 4(2):280.
    [75] Tao X, Bodington D, Reinig M, et al. High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing[J]. Optics Express, 2015, 23(11):14168.
    [76] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2015, 2(8):728.
    [77] Park J H, Yu Z, Lee Kyeo Re, et al, Perspective:Wavefront shaping techniques for controlling multiple light scattering in biological tissues:Toward in vivo applications[J]. APL Photonics, 2018, 3:100901.
    [78] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 2013, 7(4):300-305.
    [79] Yu Z, Huangfu J, Zhao F, et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 2018, 8(1):2927.
    [80] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 2014, 22(12):14054.
    [81] Rigden J D, Gordon E I. The granularity of scattered optical maser light[J]. SPIE Milestone Series Ms, 1997, 133:213.
    [82] Oliver B M. Sparking spots and random diffraction[J]. Proceedings of the IEEE, 1963, 51(1):220-221.
    [83] Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11):1145-1149.
    [84] Lim J S, Nawab H. Techniques for speckle noise removal[J]. Optical Engineering, 1981, 20(3):472-480.
    [85] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 2016, 3(1):71-74.
    [86] Bertolotti J. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491:232-234.
    [87] Tang W, Yang J, Yi W, et al. Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media[J]. Applied Optics, 2019, 58(4):1033-1039.
    [88] Vinu R V, Gaur C, Khare K, et al. Sparsity assisted approach for imaging from laser speckle[C]//Quantitative Phase Imaging Ⅲ. International Society for Optics and Photonics, 2017, 10074:1007409.
    [89] Dror I, Sandrov A, Kopeika N S. Experimental investigation of the influence of the relative position of the scattering layer on image quality:the shower curtain effect[J]. Applied Optics, 1998, 37(27):6495-6499.
    [90] Li G, Yang W, Li D, et al. Cyphertext-only attack on the double random-phase encryption:Experimental demonstration[J]. Optics Express, 2017, 25(8):8690-8697.
    [91] Feng S, Kane C, Lee P A. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 1988, 61(7):834-837.
    [92] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20):2328-2331.
    [93] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8:784-790.
    [94] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3:27-29.
    [95] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21:2758-2769.
    [96] Wu T, Katz O, Shao X. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41:5003-5006.
    [97] Singh A K, Pedrini G, Takedas M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7:10687.
    [98] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 2016, 6:33558.
    [99] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8:9614.
    [100] Mukherjee S, Vijayakumar A, Kumar M, et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 2018, 8:1134.
    [101] Shi Y, Liu Y, Wang J, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 2017, 110:231101.
    [102] Tang D, Sahoo S K, Tran V, et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing[J]. Applied Optics, 2018, 57(26):7533-7538.
    [103] Li G, Yang W, Wang H, et al. Image transmission through scattering media using ptychographic iterative engine[J]. Applied Sciences, 2019, 9(5):849.
    [104] Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26):33902-33910.
    [105] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media[J]. Optics Express, 2016, 24(13):13738-13743.
    [106] HorniK K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.
    [107] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computerassisted Intervention, 2015:234-241.
    [108] Lyu M, Wang H, Li G, et al. Learning-base lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3):036002.
    [109] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7):803-813.
    [110] Li Y, Xue Y, Tian L. Deep speckle correlation:a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10):1181-1190.
    [111] Caramazza P, Boccolini A, Buschek D, et al. Neural network identifcation of people hidden from view with a single-pixel, single-photon detector[J]. Scientific Reports, 2018, 8:11945.
    [112] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 2018, 26(23):30911-30929.
  • [1] 胡浩丰, 黄一钊, 朱震, 马千文, 翟京生, 李校博.  基于深度学习复杂环境的偏振成像技术研究进展(特邀) . 红外与激光工程, 2024, 53(3): 20240057-1-20240057-18. doi: 10.3788/IRLA20240057
    [2] 刘禹彤, 李妍, 金璐, 汤化旭, 王舜, 吴雨聪, 冯悦姝.  基于深度学习的多分辨显微关联成像系统设计 . 红外与激光工程, 2023, 52(4): 20220461-1-20220461-8. doi: 10.3788/IRLA20220461
    [3] 王伟, 蔡勋明, 赵鑫, 马文斌.  单次照射散斑高质量快速成像 . 红外与激光工程, 2023, 52(12): 20230345-1-20230345-11. doi: 10.3788/IRLA20230345
    [4] 王婷, 税渝阳, 梁浩文, 刘忆琨, 周建英.  强散射背景下的图像感知、融合与可视化技术 . 红外与激光工程, 2022, 51(8): 20220418-1-20220418-11. doi: 10.3788/IRLA20220418
    [5] 和河向, 黎永耀, 黄锦圣.  基于相位共轭实现散射成像及光学幻像的双功能散射光调控方法(特邀) . 红外与激光工程, 2022, 51(8): 20220266-1-20220266-12. doi: 10.3788/IRLA20220266
    [6] 刘金鹏, 冯怡, 刘蕾, 相萌, 刘飞, 邵晓鹏.  全息技术在散射成像领域中的研究及应用进展(特邀) . 红外与激光工程, 2022, 51(8): 20220307-1-20220307-15. doi: 10.3788/IRLA20220307
    [7] 沈乐成, 梁瀚朋, 赵佳玉, 罗嘉伟.  基于光学相位共轭的数字化波前整形技术(特邀) . 红外与激光工程, 2022, 51(8): 20220256-1-20220256-10. doi: 10.3788/IRLA20220256
    [8] 卞殷旭, 邢涛, 邓伟杰, 鲜勤, 乔洪磊, 于钱, 彭吉龙, 杨晓飞, 蒋燕男, 王家雄, 杨慎敏, 沈韧斌, 沈华, 匡翠方.  基于深度学习的色彩迁移生物医学成像技术 . 红外与激光工程, 2022, 51(2): 20210891-1-20210891-18. doi: 10.3788/IRLA20210891
    [9] 金欣, 杜东宇, 邓儒嘉.  非视域成像技术分析与展望(特邀) . 红外与激光工程, 2022, 51(8): 20220305-1-20220305-26. doi: 10.3788/IRLA20220305
    [10] 王志远, 赖雪恬, 林惠川, 陈福昌, 曾峻, 陈子阳, 蒲继雄.  基于深度学习实现透过浑浊介质图像重构(特邀) . 红外与激光工程, 2022, 51(8): 20220215-1-20220215-10. doi: 10.3788/IRLA20220215
    [11] 朱硕, 郭恩来, 柏连发, 韩静.  高效学习的透过未知散射介质的相位恢复方法 . 红外与激光工程, 2022, 51(2): 20210889-1-20210889-9. doi: 10.3788/IRLA20210889
    [12] 刘红林.  关于散射成像研究现状的一些思考(特邀) . 红外与激光工程, 2022, 51(8): 20220261-1-20220261-3. doi: 10.3788/IRLA20220261
    [13] 郭恩来, 师瑛杰, 朱硕, 程倩倩, 韦一, 苗金烨, 韩静.  深度学习下的散射成像:物理与数据联合建模优化(特邀) . 红外与激光工程, 2022, 51(8): 20220563-1-20220563-13. doi: 10.3788/IRLA20220563
    [14] 席特立, 王毓植, 刘若玉, 赵梦泽, 樊增增, 梁文海, 孙杨帆, 刘金鹏, 相萌, 刘飞, 邵晓鹏.  基于散斑相关的宽视场成像技术研究进展(特邀) . 红外与激光工程, 2022, 51(8): 20220322-1-20220322-20. doi: 10.3788/IRLA20220322
    [15] 石峰, 陆同希, 杨书宁, 苗壮, 杨晔, 张闻文, 何睿清.  噪声环境下基于单像素成像系统和深度学习的目标识别方法 . 红外与激光工程, 2020, 49(6): 20200010-1-20200010-8. doi: 10.3788/IRLA20200010
    [16] 冯世杰, 左超, 尹维, 陈钱.  深度学习技术在条纹投影三维成像中的应用 . 红外与激光工程, 2020, 49(3): 0303018-0303018-17. doi: 10.3788/IRLA202049.0303018
    [17] 钟锦鑫, 尹维, 冯世杰, 陈钱, 左超.  基于深度学习的散斑投影轮廓术 . 红外与激光工程, 2020, 49(6): 20200011-1-20200011-11. doi: 10.3788/IRLA20200011
    [18] 唐聪, 凌永顺, 郑科栋, 杨星, 郑超, 杨华, 金伟.  基于深度学习的多视窗SSD目标检测方法 . 红外与激光工程, 2018, 47(1): 126003-0126003(9). doi: 10.3788/IRLA201847.0126003
    [19] 唐聪, 凌永顺, 杨华, 杨星, 郑超.  基于深度学习物体检测的视觉跟踪方法 . 红外与激光工程, 2018, 47(5): 526001-0526001(11). doi: 10.3788/IRLA201847.0526001
    [20] 张秀玲, 侯代标, 张逞逞, 周凯旋, 魏其珺.  深度学习的MPCANet火灾图像识别模型设计 . 红外与激光工程, 2018, 47(2): 203006-0203006(6). doi: 10.3788/IRLA201847.0203006
  • 加载中
计量
  • 文章访问数:  1242
  • HTML全文浏览量:  236
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 修回日期:  2019-02-21
  • 刊出日期:  2019-06-25

计算光学成像在散射中的应用

doi: 10.3788/IRLA201948.0603005
    作者简介:

    郑珊珊(1994-),女,博士生,主要从事计算光学成像方面的研究。Email:ss_zheng@163.com

    通讯作者: 司徒国海(1978-),男,研究员,博士生导师,主要从事计算光学、散射成像、光信息处理等方面的研究。Email:ghsitu@siom.ac.cn
基金项目:

中国科学院前沿科学重点研究计划(QYZDB-SSW-JSC002);中德科学中心中德合作小组项目(GZ1391)

  • 中图分类号: O439

摘要: 自然界中普遍存在光散射现象。如何通过散射介质实现高分辨率成像是光学成像领域亟待解决的重要问题。在早期研究中,多重光散射被认为是雾霾、云层、生物组织等复杂介质成像中的障碍。然而,最近研究表明,散射并不是成像的基本限制:光子在经过多次散射后仍然包含了大量信息。为了深入了解新兴的计算光学成像是如何解决多重光散射问题的,文中主要介绍了波前整形、散斑相关及深度学习等方法在散射成像领域中的研究进展。最新的研究成果表明:波前整形可以实现动态散射介质内部的高分辨率快速聚焦;散斑相关能够利用单帧散斑实现非侵入式成像;基于深度学习的成像技术能恢复出隐藏在光学厚度为13.4的白色聚苯乙烯平板背后的物体。

English Abstract

参考文献 (112)

目录

    /

    返回文章
    返回