留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定量相位显微中分辨率增强技术综述

郜鹏 温凯 孙雪莹 姚保利 郑娟娟

郜鹏, 温凯, 孙雪莹, 姚保利, 郑娟娟. 定量相位显微中分辨率增强技术综述[J]. 红外与激光工程, 2019, 48(6): 603007-0603007(13). doi: 10.3788/IRLA201948.0603007
引用本文: 郜鹏, 温凯, 孙雪莹, 姚保利, 郑娟娟. 定量相位显微中分辨率增强技术综述[J]. 红外与激光工程, 2019, 48(6): 603007-0603007(13). doi: 10.3788/IRLA201948.0603007
Gao Peng, Wen Kai, Sun Xueying, Yao Baoli, Zheng Juanjuan. Review of resolution enhancement technologies in quantitative phase microscopy[J]. Infrared and Laser Engineering, 2019, 48(6): 603007-0603007(13). doi: 10.3788/IRLA201948.0603007
Citation: Gao Peng, Wen Kai, Sun Xueying, Yao Baoli, Zheng Juanjuan. Review of resolution enhancement technologies in quantitative phase microscopy[J]. Infrared and Laser Engineering, 2019, 48(6): 603007-0603007(13). doi: 10.3788/IRLA201948.0603007

定量相位显微中分辨率增强技术综述

doi: 10.3788/IRLA201948.0603007
基金项目: 

国家自然科学基金(61605150,61475187,6140524);国家“千人计划”基金;高等学校学科创新引智计划(B17035)

详细信息
    作者简介:

    郜鹏(1983-),男,教授,硕/博士生导师,主要从事相位显微及超分辨光学显微技术方面的研究。Email:peng.gao@xidian.edu.cn

    通讯作者: 温凯(1995-),男,硕士生,主要从事相位显微成像方面的研究。Email:thinker_wk@163.com
  • 中图分类号: O436.1

Review of resolution enhancement technologies in quantitative phase microscopy

  • 摘要: 定量相位显微(Quantitative Phase Microscopy,QPM)将相位成像和光学显微技术相结合,为微观物体的三维形貌、透明物体的厚度/折射率分布提供了一种快速、无损、高分辨率测量手段。然而,传统QPM成像系统依然是一个衍射受限系统,高分辨率与大视场难以同时兼顾。因此,如何在保持大视场的前提下提高成像空间分辨率是QPM亟需解决的问题之一。近年来,国内外学者采用离轴照明、散斑照明、结构照明、以及亚像元技术形成合成数值孔径,实现了QPM的大视场、高分辨成像。文中对以上QPM的分辨率增强技术进行了综述,并对不同方法的优缺点进行了分析。
  • [1] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5):S573-S580.
    [2] Bon P, Maucort G, Wattellier B, et al. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells[J]. Optics Express, 2009, 17(15):13080-13094.
    [3] Wei Q, Li Y, Vargas J, et al. Principal component analysis-based quantitative differential interference contrast microscopy[J]. Optics Letters, 2019, 44(1):45-48.
    [4] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5):291-293.
    [5] Waheb B, Ting-Wei S, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
    [6] Kyoohyun K, Hyeok Y, Monica D S, et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography[J]. Journal of Biomedical Optics, 2014, 19(1):011005-011018.
    [7] Marquet P, Depeursinge C, Magistretti P J. Review of quantitative phase-digital holographic microscopy:promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders[J]. Neurophotonics, 2014, 1(2):020901-020915.
    [8] Mitchison J M. Single cell studies of the cell cycle and some models[J]. Theoretical Biology Medical Modelling, 2005, 2(1):4-9.
    [9] Bedrossian M, Lindensmith C, Nadeau J L. Digital holographic microscopy, a method for detection of microorganisms in plume samples from enceladus and other icy worlds[J]. Astrobiology, 2017, 17(9):913-925.
    [10] Hsu W C, Su J W, Chang C C, et al. Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions[C]//SPIE, 2012, 8553:855310.
    [11] Lee S Y, Park H J, Kim K, et al. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus[J]. Scientific Reports, 2017, 7:1039.
    [12] Haifler M, Girshovitz P, Dardikman G, et al. Interferometric phase microscopy for label-free morphological evaluation of sperm cells[J]. Fertility and Seterility, 2015, 104(1):43-47.
    [13] Shaked N T, Satterwhite L L, Telen M J, et al. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry[J]. Journal of Biomedical Optics, 2011, 16(3):030506.
    [14] Mico V, Zalevsky Z, Garca J. Common-path phase-shifting digital holographic microscopy:A way to quantitative phase imaging and superresolution[J]. Optics Communications, 2008, 281(17):4273-4281.
    [15] Jiang H Z, Zhao J L, Di J L, et al. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography[J]. Optics Express, 2009, 17(21):18836-18842.
    [16] Schwarz C J, Kuznetsova Y, Brueck S R J. Imaging interferometric microscopy[J]. Optics Letters, 2003, 28(16):1424-1426.
    [17] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular and polarization multiplexing[J]. Applied Optics, 2011, 50(7):B6-B11.
    [18] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Single-step superresolution by interferometric imaging[J]. Optics Express, 2004, 12(12):2589-2596.
    [19] Hillman T R, Gutzler T, Alexandrov S A, et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy[J]. Optics Express, 2009, 17(10):7873-7892.
    [20] Mic V, Zalevsky Z, Ferreira C, et al. Superresolution digital holographic microscopy for three-dimensional samples[J]. Optics Express, 2008, 16(23):19260-19270.
    [21] Chowdhury S, Izatt J. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging[J]. Biomedical Optics Express, 2013, 4(10):1795-1805.
    [22] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 2013, 38(8):1328-1330.
    [23] Gao P, Yao B L, Min J W, et al. Autofocusing of digital holographic microscopy based on off-axis illuminations[J]. Optics Letters, 2012, 37(17):3630-3632.
    [24] Goodman J. Speckle Phenomena in Optics:Theory and Applications[M]. American:Roberts Company, 2006.
    [25] Tiziani H J, Pedrini G. From speckle pattern photography to digital holographic interferometry[Invited] [J]. Applied Optics, 2013, 52(1):30-44.
    [26] Garca J, Zalevsky Z, Fixler D. Synthetic aperture superresolution by speckle pattern projection[J]. Optics Express, 2005, 13(16):6073-6078.
    [27] Park Y, Choi W, Yaqoob Z, et al. Speckle-field digital holographic microscopy[J]. Optics Express, 2009, 17(15):12285-12292.
    [28] Zheng J J, Gao P, Yao B L, et al. Digital holographic microscopy with phase-shift-free structured illumination[J]. Photonics Research, 2014, 2(3):87-91.
    [29] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography:Principle, implementation and characterization[J]. Optics Express, 2015, 23(3):3472-3491.
    [30] Faulkner H M L, Rodenburg J. Movable aperture lensless transmission microscopy:A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2):023903.
    [31] Hoppe W. Beugung im inhomogenen Primrstrahlwellenfeld. I. Prinzip einer phasenmessung von elektronenbeungung-sinterferenzen[J]. Acta Crystallographica, 1969, 25(4):495-501.
    [32] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22):4845-4848.
    [33] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7:739-745.
    [34] Tian L, Liu Z, Yeh L-H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10):904-911.
    [35] He X, Liu C, Zhu J. Single-shot Fourier ptychography based on diffractive beam splitting[J]. Optics Letters, 2018, 43(2):214-217.
    [36] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7):2376-2389.
    [37] Sun J S, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations[J]. Scientific Reports, 2017, 7:1187.
    [38] Maiden A M, Humphry M J, Zhang F, et al. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4):604-612.
    [39] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494:68.
    [40] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1):27-29.
    [41] Liu Cheng, Pan Xingchen. Coherent diffractive imaging based on the multiple beam illumination with cross grating[J]. Acta Physica Sinica, 2013, 62(18):184204.
    [42] Fan Jiadong, Jiang Huaidong. Coherent X-ray diffraction imaging and its applications in materials science and biology[J]. Acta Physica Sinica, 2012, 61(21):218702.
    [43] Gao P, Pedrini G, Zuo C, et al. Phase retrieval using spatially modulated illumination[J]. Optics Letters, 2014, 39(12):3615-3618.
    [44] Zhang Jianlin, Sun Jiasong, Chen Qian, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7:11777. (in Chinese)
    [45] Wu Y, Zhang Y, Luo W, et al. Demosaiced pixel super-resolution for multiplexed holographic color imaging[J]. Scientific Reports, 2016, 6:28601.
    [46] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4:e261.
    [47] Stockmar M, Cloetens P, Zanette I, et al. Near-field ptychography:phase retrieval for inline holography using a structured illumination[J]. Scientific Reports, 2013, 3:1927.
    [48] Claus D, Rodenburg J M. Pixel size adjustment in coherent diffractive imaging within the Rayleigh-Sommerfeld regime[J]. Applied Optics, 2015, 54(8):1936-1944.
    [49] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
    [50] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
    [51] Rivenson Y, Grcs Z, Gnaydin H, et al. Deep learning microscopy[J]. Optica, 2017, 4(11):1437-1443.
    [52] Su T, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories 2012[J]. Nature Photonics, 2013, 7:739-745.
  • [1] 张靖鹏, 陈起行, 王妍卉, 董磊, 郑珍珍, 张文鑫.  天基逆合成孔径激光雷达LEO目标成像模式设计 . 红外与激光工程, 2023, 52(5): 20220679-1-20220679-10. doi: 10.3788/IRLA20220679
    [2] 阮航, 张强, 杨雨昂, 徐灿.  非均匀转动空间目标天基逆合成孔径激光雷达成像 . 红外与激光工程, 2023, 52(2): 20220406-1-20220406-9. doi: 10.3788/IRLA20220406
    [3] 尹红飞, 郭亮, 荆丹, 邢孟道, 曾晓东, 胡以华.  天基合成孔径激光雷达成像参数分析 . 红外与激光工程, 2021, 50(2): 20200144-1-20200144-12. doi: 10.3788/IRLA20200144
    [4] 田鹤, 毛宏霞, 刘铮, 曾铮.  机载逆合成孔径激光雷达微动目标稀疏成像 . 红外与激光工程, 2020, 49(S2): 20200190-20200190. doi: 10.3788/IRLA20200190
    [5] 张文辉, 曹良才, 金国藩.  大视场高分辨率数字全息成像技术综述 . 红外与激光工程, 2019, 48(6): 603008-0603008(17). doi: 10.3788/IRLA201948.0603008
    [6] 李光远, 孙建锋, 周煜, 卢智勇, 张国, 许蒙蒙, 张波.  直视合成孔径激光雷达自补偿高速空间波前调制器 . 红外与激光工程, 2018, 47(10): 1030001-1030001(7). doi: 10.3788/IRLA201847.1030001
    [7] 胡烜, 李道京, 田鹤, 赵绪锋.  激光雷达信号相位误差对合成孔径成像的影响和校正 . 红外与激光工程, 2018, 47(3): 306001-0306001(12). doi: 10.3788/IRLA201847.0306001
    [8] 吴谨, 赵志龙, 白涛, 李明磊, 李丹阳, 万磊, 唐永新, 刁伟伦.  差分合成孔径激光雷达高分辨率成像实验 . 红外与激光工程, 2018, 47(12): 1230003-1230003(7). doi: 10.3788/IRLA201847.1230003
    [9] 袁影, 王晓蕊, 吴雄雄, 穆江浩, 张艳.  多孔径压缩编码超分辨率大视场成像方法 . 红外与激光工程, 2017, 46(8): 824001-0824001(7). doi: 10.3788/IRLA201746.0824001
    [10] 李飞, 张鸿翼, 徐卫明, 舒嵘.  天基合成孔径激光雷达非合作目标成像系统设计与实验 . 红外与激光工程, 2016, 45(10): 1030001-1030001(8). doi: 10.3788/IRLA201645.1030001
    [11] 唐禹, 秦宝, 晏芸, 汪路锋, 邢孟道.  多发多收合成孔径激光雷达高分辨率宽测绘带成像 . 红外与激光工程, 2016, 45(8): 830001-0830001(8). doi: 10.3788/IRLA201645.0830001
    [12] 张艳, 陈涌, 周鼎富, 侯天晋.  锐化函数对合成孔径激光雷达成像图像的影响 . 红外与激光工程, 2015, 44(9): 2588-2592.
    [13] 李飞, 张鸿翼, 吴军, 洪光烈, 徐卫明, 舒嵘.  强度编码合成孔径激光雷达原理与实验 . 红外与激光工程, 2015, 44(9): 2575-2582.
    [14] 阮航, 吴彦鸿, 叶伟.  匀速运动目标逆合成孔径激光雷达成像算法 . 红外与激光工程, 2014, 43(4): 1124-1129.
    [15] 吴谨, 李斐斐, 赵志龙, 杨兆省, 王东蕾, 唐永新, 苏园园, 梁娜.  条带模式合成孔径激光雷达不依赖PGA的高分辨率成像演示 . 红外与激光工程, 2014, 43(11): 3559-3564.
    [16] 李小珍, 吴玉峰, 郭亮, 曾晓东.  合成孔径激光雷达下视三维成像构型及算法 . 红外与激光工程, 2014, 43(10): 3276-3281.
    [17] 李伟雄, 闫得杰, 王栋.  高分辨率空间相机俯仰成像的像移补偿方法 . 红外与激光工程, 2013, 42(9): 2442-2448.
    [18] 徐显文, 洪光烈, 张琨锋, 胡以华, 舒嵘.  月面成像合成孔径激光雷达性能分析 . 红外与激光工程, 2013, 42(3): 621-625.
    [19] 阮航, 吴彦鸿, 张书仙.  基于天基逆合成孔径激光雷达的静止轨道目标成像 . 红外与激光工程, 2013, 42(6): 1611-1616.
    [20] 张艳, 史晓丁, 陈涌, 赵彬, 周鼎富, 侯天晋.  基于外差探测的合成孔径激光雷达成像模拟 . 红外与激光工程, 2013, 42(8): 2027-2031.
  • 加载中
计量
  • 文章访问数:  864
  • HTML全文浏览量:  182
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-05
  • 修回日期:  2019-06-15
  • 刊出日期:  2019-06-25

定量相位显微中分辨率增强技术综述

doi: 10.3788/IRLA201948.0603007
    作者简介:

    郜鹏(1983-),男,教授,硕/博士生导师,主要从事相位显微及超分辨光学显微技术方面的研究。Email:peng.gao@xidian.edu.cn

    通讯作者: 温凯(1995-),男,硕士生,主要从事相位显微成像方面的研究。Email:thinker_wk@163.com
基金项目:

国家自然科学基金(61605150,61475187,6140524);国家“千人计划”基金;高等学校学科创新引智计划(B17035)

  • 中图分类号: O436.1

摘要: 定量相位显微(Quantitative Phase Microscopy,QPM)将相位成像和光学显微技术相结合,为微观物体的三维形貌、透明物体的厚度/折射率分布提供了一种快速、无损、高分辨率测量手段。然而,传统QPM成像系统依然是一个衍射受限系统,高分辨率与大视场难以同时兼顾。因此,如何在保持大视场的前提下提高成像空间分辨率是QPM亟需解决的问题之一。近年来,国内外学者采用离轴照明、散斑照明、结构照明、以及亚像元技术形成合成数值孔径,实现了QPM的大视场、高分辨成像。文中对以上QPM的分辨率增强技术进行了综述,并对不同方法的优缺点进行了分析。

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回