留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无透镜片上显微成像技术:理论、发展与应用

张佳琳 陈钱 张翔宇 孙佳嵩 左超

张佳琳, 陈钱, 张翔宇, 孙佳嵩, 左超. 无透镜片上显微成像技术:理论、发展与应用[J]. 红外与激光工程, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009
引用本文: 张佳琳, 陈钱, 张翔宇, 孙佳嵩, 左超. 无透镜片上显微成像技术:理论、发展与应用[J]. 红外与激光工程, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009
Zhang Jialin, Chen Qian, Zhang Xiangyu, Sun Jiasong, Zuo Chao. Lens-free on-chip microscopy:theory, advances, and applications[J]. Infrared and Laser Engineering, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009
Citation: Zhang Jialin, Chen Qian, Zhang Xiangyu, Sun Jiasong, Zuo Chao. Lens-free on-chip microscopy:theory, advances, and applications[J]. Infrared and Laser Engineering, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009

无透镜片上显微成像技术:理论、发展与应用

doi: 10.3788/IRLA201948.0603009
基金项目: 

国家自然科学基金(61722506,11574152);江苏省杰出青年基金(BK20170034);江苏省重点研发计划项目(BE2017162);江苏省“333工程”科研项目资助计划(BRA2016407);南京理工大学自主科研基金(30917011204)

详细信息
    作者简介:

    张佳琳(1993-),女,博士生,主要从事无透镜显微成像方面的研究。Email:JialinZhang@njust.edu.cn

    通讯作者: 左超(1987-),男,教授,博士生导师,博士,主要从事计算光学显微成像与快速三维传感等方面的研究。Email:zuochao@njust.edu.cn
  • 中图分类号: O438.1

Lens-free on-chip microscopy:theory, advances, and applications

  • 摘要: 同时实现大视场、高分辨率成像是光学显微技术发展至今不断追求的永恒目标。传统光学显微镜由于其光学设计原理限制,空间带宽积一般总是限制在百万像素量级,从而无法同时兼顾高分辨率与大视场。另一方面,复杂的光学系统也使显微镜变得日趋昂贵、笨重、复杂且难以维护,极大地限制了其推广和应用。无透镜片上显微成像技术是近年来发展出的一种新概念计算成像技术:其不利用成像透镜聚焦,而直接将所观测的样本紧贴于成像器件光敏面上方记录图像,并结合相应的图像恢复算法实现清晰物像的反演与重构。由于具有视野大、分辨率高、无需标记、成本低、便携性好和可实现三维(3D)成像等优点,无透镜片上显微镜有望拓展传统显微成像技术的疆界,成为一种新型的快捷、便携的就地检验(POCT)工具。文中从无透镜成像基本原理、实验系统、重构方法及其典型应用进行了综述。最后,讨论了无透镜显微成像现存的一些关键问题以及今后可能的发展方向。
  • [1] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645.
    [2] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 2011, 65(9):967-980.
    [3] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
    [4] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7):686-698.
    [5] Nomarski G M. Differential microinterferometer with polarized waves[J]. J Phys Radium Paris, 1955, 16:9S.
    [6] Tsien R Y. The green fluorescent protein[J]. Annual Review of Biochemistry, 1998, 67(1):509-544.
    [7] Betzig E. Single molecules, cells, and super-resolution optics (nobel lecture)[J]. Angewandte Chemie International Edition, 2015, 54(28):8034-8053.
    [8] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10):793-796.
    [9] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2):82-87.
    [10] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 2003, 300(5616):82-86.
    [11] Schneckenburger H, Weber P, Wagner M, et al. Light exposure and cell viability in fluorescence microscopy[J]. Journal of Microscopy, 2012, 245(3):311-318.
    [12] Sun Jiasong, Zhang Yuzhen, Chen Qian, et al. Fourier ptychographic microscopy:theory, advances, and applications[J]. Acta Optica Sinica, 2016, 36(10):1011005. (in Chinese)
    [13] Coskun A F, Ozcan A. Computational imaging, sensing and diagnostics for global health applications[J]. Current Opinion in Biotechnology, 2014, 25:8-16.
    [14] Brady D J, Choi K, Marks D L, et al. Compressive holography[J]. Optics Express, 2009, 17(15):13040-13049.
    [15] Xu W, Jericho M H, Meinertzhagen I A, et al. Digital in-line holography for biological applications[J]. Proceedings of the National Academy of Sciences, 2001, 98(20):11301-11305.
    [16] Greenbaum A, Luo W, Su T-W, et al. Imaging without lenses:achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9):889-895.
    [17] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5):5346-5362.
    [18] Kou S S, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3):447-449.
    [19] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8):9220-9244.
    [20] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 2017, 7(1):7654.
    [21] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy:a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2):023903.
    [22] Rodenburg J M. Ptychography and related diffractive imaging methods. Advances in Imaging and Electron Physics[M]. Burlington:Elsevier, 2008:87-184.
    [23] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739-745.
    [24] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4):1336-1350.
    [25] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18):20724-20744.
    [26] Wang L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3(9):503-509.
    [27] Li J, Chen Q, Sun J, et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations[J]. Biomedical Optics Express, 2018, 9(6):2526-2542.
    [28] Javidi B, Ponce-Daz R, Hong S-H. Three-dimensional recognition of occluded objects by using computational integral imaging[J]. Optics Letters, 2006, 31(8):1106-1108.
    [29] Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy[J]. Nature Mmethods, 2007, 4(9):717.
    [30] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
    [31] Elser V. Phase retrieval by iterated projections[J]. JOSA A, 2003, 20(1):40-55.
    [32] Gonsalves R A. Phase retrieval from modulus data[J]. JOSA, 1976, 66(9):961-964.
    [33] Cands E, Eldar Y, Strohmer T, et al. Phase retrieval via matrix completion[J]. SIAM Review, 2015, 57(2):225-251.
    [34] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 1970, 9(11):2501-2504.
    [35] Mico V, Zalevsky Z, Garca-Martnez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. JOSA A, 2006, 23(12):3162-3170.
    [36] Pacheco S, Salahieh B, Milster T, et al. Transfer function analysis in epi-illumination Fourier ptychography[J]. Optics Letters, 2015, 40(22):5343-5346.
    [37] Ma B, Zimmermann T, Rohde M, et al. Use of Autostitch for automatic stitching of microscope images[J]. Micron, 2007, 38(5):492-499.
    [38] Cui X, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences, 2008, 105(31):10670-10675.
    [39] Su T, Seo S, Erlinger A, et al. Towards wireless health:lensless on-chip cytometry[J]. Optics and Photonics News, 2008, 19(12):24-24.
    [40] Seo S, Su T-W, Tseng K D, et al. Lensfree holographic imaging for on-chip cytometry and diagnostics[J]. Lab on a Chip, 2009, 9(6):777-787.
    [41] Isikman S, Seo S, Sencan I, et al. Lensfree cell holography on a chip:from holographic cell signatures to microscopic reconstruction[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009:404-405.
    [42] Lee S A, Leitao R, Zheng G, et al. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis[J]. PLOS ONE, 2011, 6(10):e26127.
    [43] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Sciences, 2011, 108(41):16889-16894.
    [44] Pang S, Cui X, DeModena J, et al. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate[J]. Lab on a Chip, 2010, 10(4):411-414.
    [45] Garcia-Sucerquia J, Xu W, Jericho S K, et al. Digital in-line holographic microscopy[J]. Applied Optics, 2006, 45(5):836-850.
    [46] Garcia-Sucerquia J, Xu W, Jericho M H, et al. Immersion digital in-line holographic microscopy[J]. Optics Letters, 2006, 31(9):1211-1213.
    [47] Kanka M, Riesenberg R, Kreuzer H J. Reconstruction of high-resolution holographic microscopic images[J]. Optics Letters, 2009, 34(8):1162-1164.
    [48] Kanka M, Riesenberg R, Petruck P, et al. High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers[J]. Optics Letters, 2011, 36(18):3651-3653.
    [49] Mudanyali O, Tseng D, Oh C, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J]. Lab on a Chip, 2010, 10(11):1417-1428.
    [50] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
    [51] Hahn J, Lim S, Choi K, et al. Video-rate compressive holographic microscopic tomography[J]. Optics Express, 2011, 19(8):7289-7298.
    [52] Luo W, Zhang Y, Grcs Z, et al. Propagation phasor approach for holographic image reconstruction[J]. Scientific Reports, 2016, 6:22738.
    [53] Xiong Z, Melzer J E, Garan J, et al. Optimized sensing of sparse and small targets using lens-free holographic microscopy[J]. Optics Express, 2018, 26(20):25676.
    [54] Agbana T E, Gong H, Amoah A S, et al. Aliasing, coherence, and resolution in a lensless holographic microscope[J]. Optics Letters, 2017, 42(12):2271-2274.
    [55] Zhang W, Cao L, Jin G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation[J]. Applied Optics, 2018, 57(1):A164.
    [56] Allier C, Morel S, Vincent R, et al. Imaging of dense cell cultures by multiwavelength lens-free video microscopy:cell cultures by lens-free microscopy[J]. Cytometry Part A, 2017, 91(5):433-442.
    [57] Serabyn E, Liewer K, Wallace J K. Resolution optimization of an off-axis lensless digital holographic microscope[J]. Applied Optics, 2018, 57(1):A172.
    [58] Feng S, Wu J. Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source[J]. Optics Express, 2017, 25(20):24735.
    [59] Feng S, Wang M, Wu J. Lensless in-line holographic microscope with Talbot grating illumination[J]. Optics Letters, 2016, 41(14):3157.
    [60] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 2012, 20(3):3129-3143.
    [61] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(1):65-75.
    [62] Zhang Y, Pedrini G, Osten W, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J]. Optics Express, 2003, 11(24):3234-3241.
    [63] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab on a Chip, 2011, 11(7):1276-1279.
    [64] Greenbaum A, Feizi A, Akbari N, et al. Wide-field computational color imaging using pixel super-resolved on-chip microscopy[J]. Optics Express, 2013, 21(10):12469-12483.
    [65] Greenbaum A, Sikora U, Ozcan A. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging[J]. Lab on a Chip, 2012, 12(7):1242-1245.
    [66] Zheng G, Ah Lee S, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22):3125-3129.
    [67] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science Applications, 2016, 5(4):e16060.
    [68] Hussain A, Li Y, Liu D, et al. Lensless imaging through multiple phase patterns illumination[J]. Journal of Biomedical Optics, 2017, 22(11):110502.
    [69] Hussain A, Li Y, Liu D, et al. On-chip microscopy using random phase mask scheme[J]. Scientific Reports, 2017, 7(1):14768.
    [70] Feng S, Wang M, Wu J. Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction[J]. Optics Communications, 2017, 402:104-108.
    [71] Zuo C, Chen Q, Sun J, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation:a review[J]. Chinese J Lasers, 2016, 43(6):0609002.
    [72] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Optics Letters, 2012, 37(4):707-709.
    [73] Cheng H, Zhang Q, Wei S, et al. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10):1566-1570.
    [74] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14):17172-17186.
    [75] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11):14314-14328.
    [76] Zhang J, Sun J, Chen Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7(1):11777.
    [77] Zhang J, Chen Q, Li J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics Letters, 2018, 43(15):3714-3717.
    [78] Kesavan S V, Momey F, Cioni O, et al. High-throughput monitoring of major cell functions by means of lensfree video microscopy[J]. Scientific Reports, 2014, 4:5942.
    [79] Goodman J W. Statistical Optics[M]. Hoboken:John Wiley Sons, 2015.
    [80] Su T-W, Seo S, Erlinger A, et al. High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip[J]. Biotechnology and Bioengineering, 2009, 102(3):856-868.
    [81] Ozcan A, Demirci U. Ultra wide-field lens-free monitoring of cells on-chip[J]. Lab on a Chip, 2008, 8(1):98-106.
    [82] Zhang X, Khimji I, Atakan Gurkan U, et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting[J]. Lab on a Chip, 2011, 11(15):2535-2540.
    [83] Moscelli N, van den Driesche S, Witarski W, et al. An imaging system for real-time monitoring of adherently grown cells[J]. Sensors and Actuators A:Physical, 2011, 172(1):175-180.
    [84] Bok Kim S, Bae H, Min Cha J, et al. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging[J]. Lab on a Chip, 2011, 11(10):1801-1807.
    [85] Jin G, Yoo I-H, Pack S P, et al. Lens-free shadow image based high-throughput continuous cell monitoring technique[J]. Biosensors and Bioelectronics, 2012, 38(1):126-131.
    [86] Dolega M E, Allier C, Kesavan S V, et al. Label-free analysis of prostate acini-like 3D structures by lensfree imaging[J]. Biosensors and Bioelectronics, 2013, 49:176-183.
    [87] Kwak Y H, Lee J, Lee J, et al. A simple and low-cost biofilm quantification method using LED and CMOS image sensor[J]. Journal of Microbiological Methods, 2014, 107:150-156.
    [88] Penwill L A, Batten G E, Castagnetti S, et al. Growth phenotype screening of Schizosaccharomyces pombe using a Lensless microscope[J]. Biosensors and Bioelectronics, 2014, 54:345-350.
    [89] Pushkarsky I, Liu Y, Weaver W, et al. Automated single-cell motility analysis on a chip using lensfree microscopy[J]. Scientific Reports, 2014, 4:4717.
    [90] Tsai H F, Tsai Y C, Yagur Kroll S, et al. Water pollutant monitoring by a whole cell array through lens-free detection on CCD[J]. Lab on a Chip, 2015, 15(6):1472-1480.
    [91] Kesavan S V, Garcia F P N Y, Menneteau M, et al. Real-time label-free detection of dividing cells by means of lensfree video-microscopy[J]. Journal of Biomedical Optics, 2014, 19(3):036004.
    [92] Lee L M, Cui X, Yang C. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts[J]. Biomedical Microdevices, 2009, 11(5):951.
    [93] Coskun A F, Sencan I, Su T W, et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects[J]. Optics Express, 2010, 18(10):10510-10523.
    [94] Coskun A F, Su T W, Ozcan A. Wide field-of-view lens-free fluorescent imaging on a chip[J]. Lab on a Chip, 2010, 10(7):824-827.
    [95] Shanmugam A, Salthouse C D. Lensless fluorescence imaging with height calculation[J]. Journal of Biomedical Optics, 2014, 19(1):016002.
    [96] Coskun A F, Sencan I, Su T W, et al. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip[J]. Analyst, 2011, 136(17):3512-3518.
    [97] Coskun A F, Sencan I, Su T W, et al. Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view[J]. PLOS ONE, 2011, 6(1):e15955.
    [98] Martinelli L, Choumane H, Ha K N, et al. Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays:Role of a high rejection of excitation light[J]. Applied Physics Letters, 2007, 91(8):083901.
    [99] Lee S A, Ou X, Lee J E, et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor[J]. Optics Letters, 2013, 38(11):1817-1819.
    [100] Ozcan A, McLeod E. Lensless imaging and sensing[J]. Annual Review of Biomedical Engineering, 2016, 18(1):77-102.
    [101] Khademhosseinieh B, Sencan I, Biener G, et al. Lensfree on-chip imaging using nanostructured surfaces[J]. Applied Physics Letters, 2010, 96(17):171106.
    [102] Khademhosseinieh B, Biener G, Sencan I, et al. Lensfree color imaging on a nanostructured chip using compressive decoding[J]. Applied Physics Letters, 2010, 97(21):211112.
    [103] Han C, Pang S, Bower D V, et al. Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator[J]. Analytical Chemistry, 2013, 85(4):2356-2360.
    [104] Richardson W H. Bayesian-based iterative method of image restoration[J]. JOSA, 1972, 62(1):55-59.
    [105] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 1974, 79:745.
    [106] Pech-Pacheco J L, Cristobal G, Chamorro-Martinez J, et al. Diatom autofocusing in brightfield microscopy:a comparative study[C]//Proceedings of 15th International Conference on Pattern Recognition, 2000, 3:314-31.
    [107] Mudanyali O, Oztoprak C, Tseng D, et al. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy[J]. Lab on a Chip, 2010, 10(18):2419-2423.
    [108] Denis L, Fournier C, Fournel T, et al. Numerical suppression of the twin image in in-line holography of a volume of micro-objects[J]. Measurement Science and Technology, 2008, 19(7):074004.
    [109] Hardie R C, Barnard K J, Bognar J G, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system[J]. Optical Engineering, 1998, 37(1):247-261.
    [110] Park S C, Park M K, Kang M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36.
    [111] Elad M, Hel-Or Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J]. IEEE Transactions on Image Processing, 2001, 10(8):1187-1193.
    [112] Mudanyali O, Bishara W, Ozcan A. Lensfree super-resolution holographic microscopy using wetting films on a chip[J]. Optics Express, 2011, 19(18):17378-17389.
    [113] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4(3):e261.
    [114] Goodman J W. Introduction to Fourier Optics[M]. Colorado:Roberts and Company Publishers, 2005.
    [115] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1):27-29.
    [116] Koren G, Polack F, Joyeux D. Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints[J]. JOSA A, 1993, 10(3):423-433.
    [117] Mudanyali O, McLeod E, Luo W, et al. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses[J]. Nature Photonics, 2013, 7(3):247-254.
    [118] Greenbaum A, Zhang Y, Feizi A, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J]. Science Translational Medicine, 2014, 6(267):267ra175.
    [119] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
    [120] Wei Q, McLeod E, Qi H, et al. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography[J]. Scientific Reports, 2013, 3:1699.
    [121] Min J, Yao B, Zhou M, et al. Phase retrieval without unwrapping by single-shot dual-wavelength digital holography[J]. Journal of Optics, 2014, 16(12):125409.
    [122] Bao P, Situ G, Pedrini G, et al. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths[J]. Applied Optics, 2012, 51(22):5486-5494.
    [123] Meng H, Hussain F. In-line recording and off-axis viewing technique for holographic particle velocimetry[J]. Applied Optics, 1995, 34(11):1827-1840.
    [124] Isikman S O, Bishara W, Ozcan A. Partially coherent lensfree tomographic microscopy[J]. Applied Optics, 2011, 50(34):H253-H264.
    [125] Isikman S O, Bishara W, Mavandadi S, et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[J]. Proceedings of the National Academy of Sciences, 2011, 108(18):7296-7301.
    [126] Su T-W, Isikman S O, Bishara W, et al. Multi-angle lensless digital holography for depth resolved imaging on a chip[J]. Optics Express, 2010, 18(9):9690-9711.
    [127] Berdeu A, Momey F, Laperrousaz B, et al. Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy[J]. Applied Optics, 2017, 56(13):3939.
    [128] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1):269-271.
    [129] Greenbaum A, Akbari N, Feizi A, et al. Field-portable pixel super-resolution colour microscope[J]. PLOS ONE, 2013, 8(9):e76475.
    [130] Kim D S, Choi J H, Nam M H, et al. LED and CMOS image sensor based hemoglobin concentration measurement technique[J]. Sensors and Actuators B:Chemical, 2011, 157(1):103-109.
    [131] Lee J, Kwak Y H, Paek S H, et al. CMOS image sensor-based ELISA detector using lens-free shadow imaging platform[J]. Sensors and Actuators B:Chemical, 2014, 196:511-517.
    [132] Tanaka T, Saeki T, Sunaga Y, et al. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging[J]. Biosensors and Bioelectronics, 2010, 26(4):1460-1465.
    [133] Grcs Z, Orz L, Kiss M, et al. In-line color digital holographic microscope for water quality measurements[C]//Laser Applications in Life Sciences. International Society for Optics and Photonics, 2010, 7376:737614.
    [134] Jack K. Video Demystified:a Handbook for the Digital Engineer[M]. Burlington:Elsevier, 2011.
    [135] Ren Z, Xu Z, Lam E Y. Autofocusing in digital holography using deep learning[C]//Three-Dimensional and Multidimensional Microscopy:Image Acquisition and Processing XXV. International Society for Optics and Photonics, 2018, 10499:104991V.
    [136] Ren Z, Xu Z, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 2018, 5(4):337-344.
    [137] Zhang G, Guan T, Shen Z, et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 2018, 26(15):19388-19405.
    [138] Wang H, Lyu M, Situ G. eHoloNet:a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 2018, 26(18):22603-22614.
    [139] Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 2017, 25(13):15043-15057.
    [140] Goy A, Arthur K, Li S, et al. Low photon count phase retrieval using deep learning[J]. Physical Review Letters, 2018, 121(24):243902.
    [141] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7):803-813.
    [142] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 2017, 7(1):17865.
    [143] Rivenson Y, Grcs Z, Gnaydin H, et al. Deep learning microscopy[J]. Optica, 2017, 4(11):1437-1443.
    [144] Wang H, Rivenson Y, Jin Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 2019, 16(1):103.
    [145] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM:super-resolution single-molecule microscopy by deep learning[J]. Optica, 2018, 5(4):458-464.
    [146] Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 2018, 36(5):460-468.
    [147] Rivenson Y, Zhang Y, Gnaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light:Science Applications, 2018, 7(2):17141.
    [148] Horisaki R, Fujii K, Tanida J. Single-shot and lensless complex-amplitude imaging with incoherent light based on machine learning[J]. Optical Review, 2018, 25(5):593-597.
    [149] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9):1117.
    [150] Ahn D, Lee J, Moon S, et al. Human-level blood cell counting on lens-free shadow images exploiting deep neural networks[J]. The Analyst, 2018, 143(22):5380-5387.
    [151] Flaccavento G, Lempitsky V, Pope I, et al. Learning to count cells:applications to lens-free imaging of large fields[J]. Microscopic Image Analysis with Applications in Biology, 2011, 1:3.
    [152] Feizi A, Zhang Y, Greenbaum A, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning[J]. Lab on a Chip, 2016, 16(22):4350-4358.
    [153] Huang X, Guo J, Wang X, et al. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing[J]. PLOS ONE, 2014, 9(8):e104539.
    [154] Rempfler M, Kumar S, Stierle V, et al. Cell lineage tracing in lens-free microscopy videos[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017:3-11.
    [155] Grcs Z, Tamamitsu M, Bianco V, et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples[J]. Light:Science Applications, 2018, 7(1):66.
    [156] Huang X, Wang X, Yan M, et al. A robust recognition error recovery for micro-flow cytometer by machine-learning enhanced single-frame super-resolution processing[J]. Integration, the VLSI Journal, 2015, 51:208-218.
    [157] Su T-W, Choi I, Feng J, et al. Sperm trajectories form chiral ribbons[J]. Scientific Reports, 2013, 3:1664.
  • [1] 刘禹彤, 李妍, 金璐, 汤化旭, 王舜, 吴雨聪, 冯悦姝.  基于深度学习的多分辨显微关联成像系统设计 . 红外与激光工程, 2023, 52(4): 20220461-1-20220461-8. doi: 10.3788/IRLA20220461
    [2] 朱硕, 郭恩来, 柏连发, 韩静.  高效学习的透过未知散射介质的相位恢复方法 . 红外与激光工程, 2022, 51(2): 20210889-1-20210889-9. doi: 10.3788/IRLA20210889
    [3] 王爱业, 潘安, 马彩文, 姚保利.  相位恢复算法:原理、发展与应用(特邀) . 红外与激光工程, 2022, 51(11): 20220402-1-20220402-26. doi: 10.3788/IRLA20220402
    [4] 和河向, 黎永耀, 黄锦圣.  基于相位共轭实现散射成像及光学幻像的双功能散射光调控方法(特邀) . 红外与激光工程, 2022, 51(8): 20220266-1-20220266-12. doi: 10.3788/IRLA20220266
    [5] 王宇, 温凯, 张美玲, 马英, 刘旻, 郑娟娟, 郜鹏.  数字全息显微中自动调焦技术及其应用 (封面文章) (特邀) . 红外与激光工程, 2021, 50(2): 20200530-1-20200530-25. doi: 10.3788/IRLA20200530
    [6] 冯世杰, 左超, 尹维, 陈钱.  深度学习技术在条纹投影三维成像中的应用 . 红外与激光工程, 2020, 49(3): 0303018-0303018-17. doi: 10.3788/IRLA202049.0303018
    [7] 陈妮, 左超, Byoungho Lee.  基于深度测量的三维成像技术 . 红外与激光工程, 2019, 48(6): 603013-0603013(25). doi: 10.3788/IRLA201948.0603013
    [8] 刘正君, 耿勇, 谭久彬.  基于柱透镜多旋转测量的计算成像 . 红外与激光工程, 2019, 48(6): 603016-0603016(5). doi: 10.3788/IRLA201948.0603016
    [9] 潘安, 姚保利.  高通量快速傅里叶叠层显微成像技术研究进展 . 红外与激光工程, 2019, 48(6): 603012-0603012(19). doi: 10.3788/IRLA201948.0603012
    [10] 赵楠翔, 胡以华.  激光反射层析成像相位恢复算法研究 . 红外与激光工程, 2019, 48(10): 1005005-1005005(7). doi: 10.3788/IRLA201948.1005005
    [11] 程鸿, 熊帮玲, 王金成, 马慧敏, 张芬, 韦穗.  透镜模型下基于色散和强度传输方程的相位恢复技术 . 红外与激光工程, 2019, 48(6): 603018-0603018(6). doi: 10.3788/IRLA201948.0603018
    [12] 张敏敏, 田珍耘, 熊元康, 马凤英, 弓巧侠, 潘志峰, 杜艳丽.  非相干光自干涉数字全息成像技术研究 . 红外与激光工程, 2019, 48(12): 1224001-1224001(8). doi: 10.3788/IRLA201948.1224001
    [13] 程鸿, 吕倩倩, 韦穗, 邓会龙, 高要利.  基于光强传输方程与SLM的快速相位恢复 . 红外与激光工程, 2018, 47(7): 722003-0722003(5). doi: 10.3788/IRLA201847.0722003
    [14] 程鸿, 邓会龙, 沈川, 王金成, 韦穗.  光强传输方程与图像插值融合的相位恢复 . 红外与激光工程, 2018, 47(10): 1026003-1026003(7). doi: 10.3788/IRLA201847.1026003
    [15] 刘正君, 郭澄, 谭久彬.  基于多距离相位恢复的无透镜计算成像技术 . 红外与激光工程, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002
    [16] 杨虹, 黄远辉, 苗少峰, 宫睿, 邵晓鹏, 毕祥丽.  频率域光声成像系统的研究 . 红外与激光工程, 2016, 45(4): 424001-0424001(7). doi: 10.3788/IRLA201645.0424001
    [17] 张晓磊, 张祥朝, 肖虹, 徐敏.  针对结构表面的数字全息相位重构散斑去除方法 . 红外与激光工程, 2016, 45(7): 726002-0726002(8). doi: 10.3788/IRLA201645.0726002
    [18] 马鑫雪, 王建立, 王斌.  利用相位恢复波前传感技术检测球面镜面形 . 红外与激光工程, 2014, 43(10): 3428-3433.
    [19] 曾文雯, 钟小品, 李景镇.  从单幅干涉图中恢复相位的区间反转方法 . 红外与激光工程, 2014, 43(9): 3151-3156.
    [20] 俞建杰, 马晶, 谭立英, 韩琦琦.  基于相位混合算法的衍射光学元件优化设计方法 . 红外与激光工程, 2013, 42(9): 2472-2477.
  • 加载中
计量
  • 文章访问数:  2504
  • HTML全文浏览量:  471
  • PDF下载量:  773
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-10
  • 修回日期:  2019-02-20
  • 刊出日期:  2019-06-25

无透镜片上显微成像技术:理论、发展与应用

doi: 10.3788/IRLA201948.0603009
    作者简介:

    张佳琳(1993-),女,博士生,主要从事无透镜显微成像方面的研究。Email:JialinZhang@njust.edu.cn

    通讯作者: 左超(1987-),男,教授,博士生导师,博士,主要从事计算光学显微成像与快速三维传感等方面的研究。Email:zuochao@njust.edu.cn
基金项目:

国家自然科学基金(61722506,11574152);江苏省杰出青年基金(BK20170034);江苏省重点研发计划项目(BE2017162);江苏省“333工程”科研项目资助计划(BRA2016407);南京理工大学自主科研基金(30917011204)

  • 中图分类号: O438.1

摘要: 同时实现大视场、高分辨率成像是光学显微技术发展至今不断追求的永恒目标。传统光学显微镜由于其光学设计原理限制,空间带宽积一般总是限制在百万像素量级,从而无法同时兼顾高分辨率与大视场。另一方面,复杂的光学系统也使显微镜变得日趋昂贵、笨重、复杂且难以维护,极大地限制了其推广和应用。无透镜片上显微成像技术是近年来发展出的一种新概念计算成像技术:其不利用成像透镜聚焦,而直接将所观测的样本紧贴于成像器件光敏面上方记录图像,并结合相应的图像恢复算法实现清晰物像的反演与重构。由于具有视野大、分辨率高、无需标记、成本低、便携性好和可实现三维(3D)成像等优点,无透镜片上显微镜有望拓展传统显微成像技术的疆界,成为一种新型的快捷、便携的就地检验(POCT)工具。文中从无透镜成像基本原理、实验系统、重构方法及其典型应用进行了综述。最后,讨论了无透镜显微成像现存的一些关键问题以及今后可能的发展方向。

English Abstract

参考文献 (157)

目录

    /

    返回文章
    返回