留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字全息技术及散斑干涉技术在形变测量领域的发展及应用

闫浩 隆军 刘驰越 潘淑媛 左超 蔡萍

闫浩, 隆军, 刘驰越, 潘淑媛, 左超, 蔡萍. 数字全息技术及散斑干涉技术在形变测量领域的发展及应用[J]. 红外与激光工程, 2019, 48(6): 603010-0603010(13). doi: 10.3788/IRLA201948.0603010
引用本文: 闫浩, 隆军, 刘驰越, 潘淑媛, 左超, 蔡萍. 数字全息技术及散斑干涉技术在形变测量领域的发展及应用[J]. 红外与激光工程, 2019, 48(6): 603010-0603010(13). doi: 10.3788/IRLA201948.0603010
Yan Hao, Long Jun, Liu Chiyue, Pan Shuyuan, Zuo Chao, Cai Ping. Review of the development and application of deformation measurement based on digital holography and digital speckle interferometry[J]. Infrared and Laser Engineering, 2019, 48(6): 603010-0603010(13). doi: 10.3788/IRLA201948.0603010
Citation: Yan Hao, Long Jun, Liu Chiyue, Pan Shuyuan, Zuo Chao, Cai Ping. Review of the development and application of deformation measurement based on digital holography and digital speckle interferometry[J]. Infrared and Laser Engineering, 2019, 48(6): 603010-0603010(13). doi: 10.3788/IRLA201948.0603010

数字全息技术及散斑干涉技术在形变测量领域的发展及应用

doi: 10.3788/IRLA201948.0603010
基金项目: 

科技部国家重点研发计划(2016YFF0200700);国家自然科学基金(61405111)

详细信息
    作者简介:

    闫浩(1982-),女,副教授,硕士生导师,博士,主要从事数字全息、面向纳米通信网络的合成分子通信方面的研究。Email:yan_hao@sjtu.edu.cn

  • 中图分类号: O438.1

Review of the development and application of deformation measurement based on digital holography and digital speckle interferometry

  • 摘要: 对近年来数字全息及散斑干涉技术在形变与位移测量方面的主要技术发展及应用发展进行综述。由于数字全息测量具有准确性高、无损、全场和动态测量等优点,成为形变和位移测量的重要技术之一。最近几年,数字全息技术在形变测量领域的发展主要体现在如下几个方面。首先,数字全息形变测量逐步由原来单一维度的形变测量转向多维度的形变测量。尤其是三维形变的同时测量是近年来本领域的研究重点。其次,形貌形变联合测量的技术受到关注。实际应用中曲面物体常常存在。而曲面物体需要离面与面内形变的分析,这需要获取曲面物体的形貌信息。针对这一需求,学者们针对形貌形变的同时测量方法开展了研究。再次,为了进一步扩大测量视场和深度范围,对基于长波长及远距离的技术进行了探索。与此同时,回顾了数字全息的形变测量技术在应用方面的进展。值得关注的是,在应用方面,数字全息技术从以前工程领域的形变测量向生物医学领域的形变测量发展,测量数据用于生物医学领域疾病分析与研究。
  • [1] Bettens S, Yan H, Blinder D, et al. Studies on the sparsifying operator in compressive digital holography[J]. Opt Express, 2017, 25(16):18656-18676.
    [2] Asundi A, Cai P, Hao Y, et al. Investigation of the systematic axial measurement error caused by the space variance effect in digital holography[J]. Opt Lasers Eng,2018, 112:16-25.
    [3] Hao Y, Asundi A. Impact of charge-coupled device size on axial measurement error in digital holographic system[J]. Opt Lett, 2013, 38(8):1194-1196.
    [4] Yan F, Yan H, Yu Y, et al. The suppression of phase error by applying window functions to digital holography[J]. Opt Lasers Eng, 2016, 86:206-215.
    [5] Bhaduri B, Kothiyal M P, Mohan N K. A comparative study of phase-shifting algorithms in digital speckle pattern interferometry[J]. Optik, 2008, 119(3):147-152.
    [6] North Morris M, Millerd J, Brock N, et al. Dynamic phase-shifting electronic speckle pattern interferometer[J]. Opt Manuf Test, 2005, 5869:58691B.
    [7] Awatsuji Y. Parallel phase-shifting digital holography[J]. Multi-Dimensional Imaging, 2014, 85(6):1069-1071.
    [8] Cai L Z, Liu Q, Yang X L. Reply to comment on phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps[J]. Opt Lett, 2004, 29(19):1808-1810.
    [9] Kao C C, Yeh G B, Lee S S, et al. Phase-shifting algorithms for electronic speckle pattern interferometry[J]. Appl Opt, 2007, 41(1):46-54.
    [10] He X, Nguyen C V, Pratap M, et al. Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy[J]. Biomed Opt Express, 2016, 7(8):3111-3123.
    [11] Arai Y. Electronic speckle pattern interferometry based on spatial information using only two sheets of speckle patterns[J]. J Mod Opt, 2014, 61(4):297-306.
    [12] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Appl Opt, 2008, 39(23):4070-4075.
    [13] De la Torre Ibarra M H, Flores Moreno J M, Aguayo D D, et al. Displacement measurements over a square meter area using digital holographic interferometry[J]. Opt Eng, 2014, 53(9):092009.
    [14] Vandenrijt J F, Thizy C, Martin L, et al. Digital holographic interferometry in the long-wave infrared and temporal phase unwrapping for measuring large deformations and rigid body motions of segmented space detector in cryogenic test[J]. Opt Eng, 2016, 55(12):121723.
    [15] Wang Y H, Feng J Y, Wang X, et al. Shearing speckle interfermometry based on slit aperture for dynamic measurement[J]. Optics and Precision Engineering, 2015, 23(3):645-651. (in Chinese)
    [16] Liu K, Wu S J, Gao X Y, et al. Simultaneous measurement of in-plane and out-of-plane deformations using dual-beam spatial-carrier digital speckle pattern interferometry[J]. Appl Mech Mater, 2015, 782:316-325.
    [17] Kemao Q. Two-dimensional windowed Fourier transform for fringe pattern analysis:principles, applications and implementations[J]. Opt Lasers Eng, 2007, 45(2):304-317.
    [18] Xiao Q, Li J, Zeng Z. A Denoising scheme for DSPI phase based on improved variational mode decomposition[J]. Mech Syst Signal Process, 2018, 110:28-41.
    [19] Zhao M, Kemao Q. Quality-guided phase unwrapping implementation:An improved indexed interwoven linked list[J]. Appl Opt, 2014, 53(16):3492-3500.
    [20] Schwede R, Babovsky H, Kiessling A, et al. Measurement of three-dimensional deformation vectors with digital holography and stereophotogrammetry[J]. Opt Lett, 2012, 37(11):1943-1945.
    [21] Yan H, Pan B. Three-dimensional displacement measurement based on the combination of digital holography and digital image correlation[J]. Opt Lett, 2014, 39(17):5166-5169.
    [22] Khaleghi M, Lu W, Dobrev I, et al. Digital holographic measurements of shape and three-dimensional sound-induced displacements of tympanic membrane[J]. Opt Eng, 2013, 52(10):101916.
    [23] Kulkarni R, Rastogi P. Three-dimensional displacement measurement from phase signals embedded in a frame in digital holographic interferometry[J]. Appl Opt, 2015, 54(11):3393-3397.
    [24] Jiang Y P, Wu S J, Yang L X, et al. Simultaneous measurement of contour and micro-deformation using full-field optical methods[J]. Journal of Appl Opt, 2017, 38(1):67-71. (in Chinese)
    [25] Lpez U U, Hernndez-Montes M del S, Mendoza-Santoyo F. Fully automated digital holographic interferometer for 360Deg contour and displacement measurements[J]. Opt Eng, 2016, 55(12):121719.
    [26] Li P F, Cai P, Long J, et al. Measurement of out-of-plane deformation of curved objects with digital speckle pattern interferometry[J]. Chinese Optics Letters, 2018, 16(11):111202. (in Chinese)
    [27] Ma J, Wang Y H, An D, et al. Three-dimensional object shape measurement based on deflection method[J]. Tool Eng, 2014, 48(6):80-83. (in Chinese)
    [28] Song C, Guru Prasad A S, Chan K H K, et al. Characterization and optimization of illumination vector for contouring surface form and feature using DSPI[J]. Rev Sci Instrum, 2016, 87(6):063116.
    [29] Stipcevic M, Demoli N, Skenderovic H, et al. Effective procedure for determination of unknown vibration frequency and phase using time-averaged digital holography[J]. Opt Express, 2017, 25(9):10241-10254.
    [30] Krzemień L,Lukomski M, Kijowska A, et al. Combining digital speckle pattern interferometry with shearography in a new instrument to characterize surface delamination in museum artefacts[J]. J Cult Herit, 2015, 16(4):544-550.
    [31] Statsenko T, Chatziioannou V, Moore T, et al. Deformation reconstruction by means of surface optimization Part Ⅱ:time-resolved electronic speckle pattern interferometry[J]. Appl Opt, 2017, 56(3):654-661.
    [32] Oliveira G N, Rodrigues D M C, Nunes L C S, et al. Digital Fourier transform holography applied to investigate mechanical deformation in polymers[J]. Opt Lasers Eng, 2012, 50(12):1798-1803.
    [33] Furlong C, Dobrev I, Rosowski J, et al. Assessing eardrum deformation by digital holography[J]. SPIE Newsroom, 2013:4612-4614.
    [34] Xia P, Ri S, Wang Q, et al. Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system[J]. Opt Express, 2018, 26(10):12594-12604.
    [35] Kumar M, Birhman A S, Kannan S. Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry[J]. Opt Eng, 2018, 57(9):094106.
    [36] Maile N C, Mahadik S B, Takale M V, et al. Surface deformation studies of MnO2 film by double exposure digital holographic interferometry technique[J]. Mater Res Express, 2019, 6(4):1-8.
    [37] Li B, Yang G B. Electronic speckle pattern interferometry method applied to measurement of shrinkage deformation of light-cured composite resin[J]. Journal of Tongji University (Natural Science), 2012, 40(1):133-136. (in Chinese)
    [38] Xu X, Wang K F, Gu G Q, et al. Measurement of internal material flaws based on out-of-plane displacement digital speckle pattern interferometry[J]. Laser Tech, 2012, 36(4):548-552. (in Chinese)
    [39] Kumar M, Shakher C, Agarwal R, et al. Deformation measurements in cortical bone-miniscrew interface in human maxilla by using digital speckle pattern interferometry[C]//SPIE, 2018, 10834:1083412.
    [40] Gao C, Gao Z, Wang X, et al. Real-time measurement of microcantilever displacement based on linnik microscopic speckle interferometer[J]. Opt Eng, 2018, 57(12):124101.
    [41] Rajput S K, Matoba O, Awatsuji Y. Characteristics of vibration frequency measurement based on sound field imaging by digital holography[J]. OSA Contin, 2018, 1(1):200-212.
    [42] Gandhi P S, Deepak S A, Agrawal P. Experimental measurement of vibration of liquid droplet at low bond numbers using ESPI[C]//Fluid Mechanics and Fluid Power-Contemporary Research, 2017:1371-1379.
    [43] Ma Y H, Tao N, Dai M L, et al. Investigation on vibration response of aluminum foam beams using speckle interferometry[J]. Exp Tech, 2018, 42(1):69-77.
    [44] Mrozek P, Mrozek E, Werner A. Electronic speckle pattern interferometry for vibrational analysis of cutting tools[J]. Acta Mech Autom, 2018, 12(2):135-140.
  • [1] 张玉杰, 徐雷, 管钰晴, 邹文哲, 郭创为, 雷李华, 傅云霞, 郭珍艳, 顾振杰, 邓晓.  基于平面反射式全息光栅的激光自混合纳米位移测量研究 . 红外与激光工程, 2023, 52(4): 20220676-1-20220676-8. doi: 10.3788/IRLA20220676
    [2] 雷鹏, 胡金春, 朱煜, 杜胜武.  傅氏级数和多项式结合的图像灰度建模及位移测量 . 红外与激光工程, 2022, 51(3): 20210123-1-20210123-8. doi: 10.3788/IRLA20210123
    [3] 金其文, 关键, 吴学成.  数字全息在线监测300 MW机组煤粉细度试验研究 . 红外与激光工程, 2021, 50(9): 20200456-1-20200456-9. doi: 10.3788/IRLA20200456
    [4] 张文辉, 曹良才, 金国藩.  大视场高分辨率数字全息成像技术综述 . 红外与激光工程, 2019, 48(6): 603008-0603008(17). doi: 10.3788/IRLA201948.0603008
    [5] 孔明, 郝玲, 刘维, 王道档, 许新科, 李芹.  数字全息中基于优化Harris角点的相位拼接算法 . 红外与激光工程, 2019, 48(11): 1126002-1126002(7). doi: 10.3788/IRLA201948.1126002
    [6] 曾雅楠, 卢钧胜, 常新宇, 刘源, 胡晓东, 卫勇, 王艳艳.  数字像面全息显微技术的降噪方法 . 红外与激光工程, 2019, 48(5): 524003-0524003(7). doi: 10.3788/IRLA201948.0524003
    [7] 刘力双, 吕勇, 孟浩, 黄佳兴.  采用多准直光束测量六自由度微位移新方法 . 红外与激光工程, 2019, 48(6): 617002-0617002(8). doi: 10.3788/IRLA201948.0617002
    [8] 赵亚迪, 曹晓华, 陈波, 孙天齐.  数字全息亚像素位移综合孔径方法 . 红外与激光工程, 2018, 47(6): 626002-0626002(5). doi: 10.3788/IRLA201847.0626002
    [9] 邓勇, 马志强, 江奕, 张松, 蔡婷.  HeNe激光双折射外腔回馈位移测量仪研究 . 红外与激光工程, 2017, 46(2): 206007-0206007(6). doi: 10.3788/IRLA201746.0206007
    [10] 张晓磊, 张祥朝, 肖虹, 徐敏.  针对结构表面的数字全息相位重构散斑去除方法 . 红外与激光工程, 2016, 45(7): 726002-0726002(8). doi: 10.3788/IRLA201645.0726002
    [11] 张红颖, 易建军, 于之靖.  基于分形插值的频域散斑相关法面内位移测量 . 红外与激光工程, 2016, 45(9): 917004-0917004(6). doi: 10.3788/IRLA201645.0917004
    [12] 林存宝, 颜树华, 由福盛, 杜志广.  二维光栅制作与装配误差综合建模与实验研究 . 红外与激光工程, 2016, 45(12): 1217005-1217005(9). doi: 10.3788/IRLA201645.1217005
    [13] 崔珊珊, 李琦.  基于小波变换的太赫兹数字全息再现像去噪研究 . 红外与激光工程, 2015, 44(6): 1836-1840.
    [14] 周皓, 顾济华, 陈大庆.  数字全息多平面成像技术研究 . 红外与激光工程, 2015, 44(2): 513-518.
    [15] 王添, 于佳, 杨宇, 闫高宾, 王金城.  数字全息显微测量中相位畸变的矫正方法 . 红外与激光工程, 2014, 43(11): 3615-3620.
    [16] 杨宇航, 陈宇, 李鹤, 王文生.  基于频域数字散斑相关方法的面内微位移测量 . 红外与激光工程, 2014, 43(4): 1301-1305.
    [17] 范俊叶, 尹博超, 王文生.  双曝光数字全息三维变形测试 . 红外与激光工程, 2014, 43(5): 1582-1586.
    [18] 伍剑, 袁波, 王立强.  单光栅数字莫尔位移测量法 . 红外与激光工程, 2014, 43(10): 3404-3409.
    [19] 沈磊, 李顶根, 褚俊, 朱鸿茂.  激光三角法位移测量中数字散斑相关法的研究 . 红外与激光工程, 2014, 43(1): 288-293.
    [20] 褚俊, 李顶根, 罗锋, 刘明勇.  激光三角法位移测量中光强度的模糊自适应控制 . 红外与激光工程, 2013, 42(6): 1458-1462.
  • 加载中
计量
  • 文章访问数:  864
  • HTML全文浏览量:  194
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-10
  • 修回日期:  2019-02-25
  • 刊出日期:  2019-06-25

数字全息技术及散斑干涉技术在形变测量领域的发展及应用

doi: 10.3788/IRLA201948.0603010
    作者简介:

    闫浩(1982-),女,副教授,硕士生导师,博士,主要从事数字全息、面向纳米通信网络的合成分子通信方面的研究。Email:yan_hao@sjtu.edu.cn

基金项目:

科技部国家重点研发计划(2016YFF0200700);国家自然科学基金(61405111)

  • 中图分类号: O438.1

摘要: 对近年来数字全息及散斑干涉技术在形变与位移测量方面的主要技术发展及应用发展进行综述。由于数字全息测量具有准确性高、无损、全场和动态测量等优点,成为形变和位移测量的重要技术之一。最近几年,数字全息技术在形变测量领域的发展主要体现在如下几个方面。首先,数字全息形变测量逐步由原来单一维度的形变测量转向多维度的形变测量。尤其是三维形变的同时测量是近年来本领域的研究重点。其次,形貌形变联合测量的技术受到关注。实际应用中曲面物体常常存在。而曲面物体需要离面与面内形变的分析,这需要获取曲面物体的形貌信息。针对这一需求,学者们针对形貌形变的同时测量方法开展了研究。再次,为了进一步扩大测量视场和深度范围,对基于长波长及远距离的技术进行了探索。与此同时,回顾了数字全息的形变测量技术在应用方面的进展。值得关注的是,在应用方面,数字全息技术从以前工程领域的形变测量向生物医学领域的形变测量发展,测量数据用于生物医学领域疾病分析与研究。

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回