留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical phase conjugation (OPC) for focusing light through/inside biological tissue

Chengmingyue Li

Chengmingyue Li. Optical phase conjugation (OPC) for focusing light through/inside biological tissue[J]. 红外与激光工程, 2019, 48(7): 702001-0702001(9). doi: 10.3788/IRLA201948.0702001
引用本文: Chengmingyue Li. Optical phase conjugation (OPC) for focusing light through/inside biological tissue[J]. 红外与激光工程, 2019, 48(7): 702001-0702001(9). doi: 10.3788/IRLA201948.0702001
Chengmingyue Li. Optical phase conjugation (OPC) for focusing light through/inside biological tissue[J]. Infrared and Laser Engineering, 2019, 48(7): 702001-0702001(9). doi: 10.3788/IRLA201948.0702001
Citation: Chengmingyue Li. Optical phase conjugation (OPC) for focusing light through/inside biological tissue[J]. Infrared and Laser Engineering, 2019, 48(7): 702001-0702001(9). doi: 10.3788/IRLA201948.0702001

Optical phase conjugation (OPC) for focusing light through/inside biological tissue

doi: 10.3788/IRLA201948.0702001
详细信息
    作者简介:

    Chengmingyue Li (1988-),female,doctor.Her research is focused on optics,optical material and imaging techniques,includes holographic data storage and display,holographic material,two-photon microscopy and optical phase conjugation.Email:lcmy2010@163.com

  • 中图分类号: TN26

Optical phase conjugation (OPC) for focusing light through/inside biological tissue

More Information
    Author Bio:

    Chengmingyue Li (1988-),female,doctor.Her research is focused on optics,optical material and imaging techniques,includes holographic data storage and display,holographic material,two-photon microscopy and optical phase conjugation.Email:lcmy2010@163.com

  • 摘要: Optical phase conjugation(OPC) is a technique that generates a light field with reversed wavefront and identical amplitude distribution as the incident light. It has a unique feature of suppressing the aberration of incident beam induced by inhomogeneous or disturbing medium. Although this technique has been extensively studied since the 1970s, it has become more attractive because of unprecedented achievements and prospective potentials in biomedical applications. OPC-based techniques have been successfully utilized to form a focus through/inside highly scattered biological samples. It opens a new avenue by significantly enhancing the light delivery in biological tissue for high-resolution imaging, diagnosis and treatment of medical diseases. In order to provide insight into its further development, recent progress of OPC techniques for focusing light through/inside biological tissue was summarized.
  • [1] He G S. Optical phase conjugation:principles, techniques, and applications[J]. Progress in Quantum Electronics, 2002, 26:131-191.
    [2] Fisher R. Optical Phase Conjugation[M]. San Diego:Academic Press, 1983.
    [3] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 1966, 56:523-523.
    [4] Goodman J W, Huntley W H, Jackson D W, et al. Wavefront-reconstruction imaging through random media[J]. Appl Phys Lett, 1966, 8:311-313.
    [5] Pepper D M, Fekete D, Yariv A. Observation of amplified phase-conjugate reflection and optical parametric oscillation by degenerate 4-wave mixing in a transparent medium[J].Appl Phys Lett, 1978, 33:41-44.
    [6] Auyeung J, Fekete D, Pepper D, et al. A theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors[J]. IEEE J Quantum Electron, 1979, 15:1180-1188.
    [7] Levenson M D. High-resolution imaging by wave-front conjugation[J]. Opt Lett, 1980, 5:182-184.
    [8] Sun X, Zhou Z, Li Y, et al. Holographic associative memory using a coherently induced double phase conjugate mirror[J]. Opt Eng, 1996, 35:2153-2157.
    [9] Yariv A. Phase conjugate optics and real-time holography[J].IEEE J Quantum Electron, 1978, 14:650-660.
    [10] Dunning G J, Lind R C. Demonstration of image transmission through fibers by optical phase conjugation[J]. Opt Lett, 1982, 7:558-560.
    [11] Yariv A, Fekete D, Pepper D M. Compensation for channel dispersion by nonlinear optical phase conjugation[J]. Opt Lett, 1979, 4:52-54.
    [12] Gower M C, Caro R G. KrF laser with a phase-conjugate Brillouin mirror[J]. Opt Lett, 1982, 7:162-164.
    [13] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nat Photonics, 2011, 5:154-157.
    [14] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J].Nat Photonics, 2015, 9:563-571.
    [15] Wang Lihong, Wu H. Biomedical Optics:Principles and Imaging[M]. Hoboken:John Wiley Sons, 2007.
    [16] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nat Photonics, 2008, 2:110-115.
    [17] Yariv A, Pepper D M. Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing[J]. Opt Lett, 1977, 1:16-18.
    [18] Wang V, Giuliano C R. Correction of phase aberrations via stimulated Brillouin scattering[J]. Opt Lett, 1978, 2:4-6.
    [19] Tomov I V, Fedosejevs R, McKen D C C, et al. Phase conjugation and pulse compression of KrF-laser radiation by stimulated Raman scattering[J]. Opt Lett, 1983, 8:9-11.
    [20] Kogelnik H. Holographic image projection through inhomogeneous media[J]. Bell Syst Tech J, 1965, 44:2451-2455.
    [21] McDowell E J, Cui M, Vellekoop I M, et al. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. Journal of Biomedical Optics, 2010, 15(2):025004.
    [22] Cui M, McDowell E J, Yang C. An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear[J]. Opt Express, 2010, 18:25-30.
    [23] Lai P, Xu X, Liu H, et al. Time-reversed ultrasonically encoded optical focusing in biological tissue[J]. Journal of Biomedical Optics, 2012, 17(3):036001.
    [24] Yang Q, Xu X, Lai P, et al. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution[J]. Journal of Biomedical Optics, 2013, 18(11):110502.
    [25] Lai P, Suzuki Y, Xu X, et al. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media[J]. Laser Physics Letters, 2013, 10(7):075604.
    [26] Liu Y, Lai P, Ma C, et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 2015, 6:5904.
    [27] Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33000optical power gain[J]. Scientific Reports, 2015, 5:8896.
    [28] Suzuki Y, Xu X, Lai P, et al. Energy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer[J]. Journal of Biomedical Optics, 2012, 17(8):80507.
    [29] Pang G, Liu H, Hou P, et al. Optical phase conjugation of diffused light with infinite gain by using gated two-color photorefractive crystal LiNbO3:Cu:Ce[J]. Appl Opt, 2018, 57:2675-2678.
    [30] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Opt Express, 2010, 18:3444-3455.
    [31] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Opt Express, 2014, 22:14054-14071.
    [32] Hemphill A S, Shen Y, Hwang J, et al. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials[J]. Journal of Biomedical Optics, 2018, 24(3):031004.
    [33] Azimipour M, Atry F, Pashaie R. Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials[J]. Appl Opt, 2016, 55:2873-2880.
    [34] Hillman T R, Yamauchi T, Choi W, et al. Digital optical phase conjugation for delivering two-dimensional images through turbid media[J]. Scientific Reports, 2013, 3:1909.
    [35] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 2016, 21(8):085001.
    [36] Liu Y, Shen Y, Ruan H, et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses[J]. Journal of Biomedical Optics, 2018, 23(1):010501.
    [37] Jang M, Ruan H, Vellekoop I M, et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media:a study on in vivo mouse skin[J]. Biomedical Optics Express, 2015, 6:72-85.
    [38] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2015, 2(8):728-735.
    [39] Wang Y M, Judkewitz B, DiMarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 2012, 3:928.
    [40] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation[J]. Nat Photonics, 2012, 6:657-661.
    [41] Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy[J]. Scientific Reports, 2012, 2:748.
    [42] Ruan H, Jang M, Judkewitz B, et al. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode[J]. Scientific Reports, 2014, 4:7156.
    [43] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)[J]. Nat Photonics, 2013, 7:300-305.
    [44] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Opt Express, 2010, 18:20723-20731.
    [45] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Appl Phys Lett, 2012, 101(8):81108.
    [46] Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light[J]. Nature Communications, 2015, 6:8968.
    [47] Ruan H, Haber T, Liu Y, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 2017, 4:1337-1343.
    [48] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nat Photonics, 2014, 8:931-936.
    [49] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1:227-232.
    [50] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 2017, 3:eaao5520.
    [51] Park J-H, Yu Z, Lee K, et al. Perspective:Wavefront shaping techniques for controlling multiple light scattering in biological tissues:Toward in vivo applications[J]. APL Photonics, 2018, 3:100901.
    [52] Shen Y, Liu Y, Ma C, et al. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media[J].Optica, 2017, 4:97-102.
    [53] Hemphill A S, Shen Y, Liu Y, et al. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping[J]. Appl Phys Lett, 2017, 111:221109.
    [54] Klein M B. Beam coupling in undoped GaAs at 1.06m using the photorefractive effect[J]. Opt Lett, 1984, 9:350-352.
    [55] Liu Y, Ma C, Shen Y, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 2017, 4:280-288.
    [56] Hemphill A S, Tay J W, Wang L V. Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media[J]. Journal of Biomedical Optics, 2016, 21(12):121502.
    [57] Liu Y, Ma C, Shen Y, et al. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media[J]. Opt Lett, 2016, 41:1321-1324.
    [58] Ma C, Zhou F, Liu Y, et al. Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation[J]. Optica, 2015, 2:869-876.
  • [1] 郑伟, 张迪, 原昊, 于娜娜, 席思星, 王桂林, 马帅, 王晓雷, 郞利影.  基于轨道角动量全息和频移的大容量光学信息加密技术 . 红外与激光工程, 2023, 52(7): 20230313-1-20230313-9. doi: 10.3788/IRLA20230313
    [2] 王坤, 谭博文, 陈义夫, 王雨雷, 白振旭, 吕志伟.  液体SBS-PCM中泵浦光重复频率对热对流特性的影响(特邀) . 红外与激光工程, 2023, 52(8): 20230415-1-20230415-8. doi: 10.3788/IRLA20230415
    [3] Fu Yanjun, Cai Xiaoqi, Zhong Kejun, Ma Baiheng, Yan Zhanjun.  Method for phase-height mapping calibration based on fringe projection profilometry . 红外与激光工程, 2022, 51(4): 20210403-1-20210403-9. doi: 10.3788/IRLA20210403
    [4] Cheng Hong, Wang Li, Wang Rui, Xiang Xinyu, Zhang Quanbing, Zhu Xiaotian.  Phase retrieval based on the transport of intensity equation under adaptive focus . 红外与激光工程, 2022, 51(3): 20210231-1-20210231-11. doi: 10.3788/IRLA20210231
    [5] 沈乐成, 梁瀚朋, 赵佳玉, 罗嘉伟.  基于光学相位共轭的数字化波前整形技术(特邀) . 红外与激光工程, 2022, 51(8): 20220256-1-20220256-10. doi: 10.3788/IRLA20220256
    [6] 金其文, 关键, 吴学成.  数字全息在线监测300 MW机组煤粉细度试验研究 . 红外与激光工程, 2021, 50(9): 20200456-1-20200456-9. doi: 10.3788/IRLA20200456
    [7] 王天齐, 康治军, 孟冬冬, 邱基斯, 刘昊.  受激布里渊散射相位共轭镜在高功率纳秒激光器中的应用进展 . 红外与激光工程, 2021, 50(5): 20211024-1-20211024-12. doi: 10.3788/IRLA20211024
    [8] Cheng Hong, Liu Yong, Hu Jiajie, Zhang Xiaolong, Deng Huilong, Wei Sui.  Hybrid phase retrieval with chromatic dispersion in single-lens system . 红外与激光工程, 2020, 49(10): 20200017-1-20200017-9. doi: 10.3788/IRLA20200017
    [9] 李子乐, 周舟, 梁聪玲, 郑国兴.  融合计算全息术与纳米印刷术的多功能超表面研究进展 . 红外与激光工程, 2020, 49(9): 20201036-1-20201036-15. doi: 10.3788/IRLA20201036
    [10] 邓子岚, 涂清安, 李向平.  多维度超表面及其在信息加密防伪上的应用 . 红外与激光工程, 2020, 49(9): 20201034-1-20201034-16. doi: 10.3788/IRLA20201034
    [11] Wang Xing, Gao Lei, Wang Yan, Wang Haitao.  Design of a hybid ultrasound and digital holography imaging system for detection of internal micro-defects . 红外与激光工程, 2020, 49(7): 20190518-1-20190518-11. doi: 10.3788/IRLA20190518
    [12] 曾雅楠, 卢钧胜, 常新宇, 刘源, 胡晓东, 卫勇, 王艳艳.  数字像面全息显微技术的降噪方法 . 红外与激光工程, 2019, 48(5): 524003-0524003(7). doi: 10.3788/IRLA201948.0524003
    [13] 孔明, 郝玲, 刘维, 王道档, 许新科, 李芹.  数字全息中基于优化Harris角点的相位拼接算法 . 红外与激光工程, 2019, 48(11): 1126002-1126002(7). doi: 10.3788/IRLA201948.1126002
    [14] 闫浩, 隆军, 刘驰越, 潘淑媛, 左超, 蔡萍.  数字全息技术及散斑干涉技术在形变测量领域的发展及应用 . 红外与激光工程, 2019, 48(6): 603010-0603010(13). doi: 10.3788/IRLA201948.0603010
    [15] 臧瑞环, 汤明玉, 段智勇, 马凤英, 杜艳丽, 刘晓旻, 弓巧侠.  菲涅耳非相干相关全息相移技术 . 红外与激光工程, 2019, 48(8): 825001-0825001(8). doi: 10.3788/IRLA201948.0825001
    [16] 赵亚迪, 曹晓华, 陈波, 孙天齐.  数字全息亚像素位移综合孔径方法 . 红外与激光工程, 2018, 47(6): 626002-0626002(5). doi: 10.3788/IRLA201847.0626002
    [17] 黄应清, 苏健, 陈祎贝, 闫兴鹏, 蒋晓瑜.  全息打印技术研究进展 . 红外与激光工程, 2018, 47(4): 406008-0406008(13). doi: 10.3788/IRLA201847.0406008
    [18] 张颖, 柯熙政, 陈明莎.  受激布里渊散射波前畸变校正仿真实验 . 红外与激光工程, 2018, 47(11): 1122001-1122001(7). doi: 10.3788/IRLA201847.1122001
    [19] Hideyoshi Horimai, Lin Xiao, Liu Jinpeng, Tan Xiaodi.  High density holographic versatile disc (HVD) system using collinear technologies . 红外与激光工程, 2016, 45(9): 935006-0935006(6). doi: 10.3788/IRLA201645.0935006
    [20] 范俊叶, 尹博超, 王文生.  双曝光数字全息三维变形测试 . 红外与激光工程, 2014, 43(5): 1582-1586.
  • 加载中
计量
  • 文章访问数:  614
  • HTML全文浏览量:  98
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-05
  • 修回日期:  2019-03-03
  • 刊出日期:  2019-07-25

Optical phase conjugation (OPC) for focusing light through/inside biological tissue

doi: 10.3788/IRLA201948.0702001
    作者简介:

    Chengmingyue Li (1988-),female,doctor.Her research is focused on optics,optical material and imaging techniques,includes holographic data storage and display,holographic material,two-photon microscopy and optical phase conjugation.Email:lcmy2010@163.com

  • 中图分类号: TN26

摘要: Optical phase conjugation(OPC) is a technique that generates a light field with reversed wavefront and identical amplitude distribution as the incident light. It has a unique feature of suppressing the aberration of incident beam induced by inhomogeneous or disturbing medium. Although this technique has been extensively studied since the 1970s, it has become more attractive because of unprecedented achievements and prospective potentials in biomedical applications. OPC-based techniques have been successfully utilized to form a focus through/inside highly scattered biological samples. It opens a new avenue by significantly enhancing the light delivery in biological tissue for high-resolution imaging, diagnosis and treatment of medical diseases. In order to provide insight into its further development, recent progress of OPC techniques for focusing light through/inside biological tissue was summarized.

English Abstract

参考文献 (58)

目录

    /

    返回文章
    返回