留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光熔覆Fe0.5NiCoCrCuTi高熵合金涂层的微观结构及性能

邱星武

邱星武. 激光熔覆Fe0.5NiCoCrCuTi高熵合金涂层的微观结构及性能[J]. 红外与激光工程, 2019, 48(7): 742004-0742004(8). doi: 10.3788/IRLA201948.0742004
引用本文: 邱星武. 激光熔覆Fe0.5NiCoCrCuTi高熵合金涂层的微观结构及性能[J]. 红外与激光工程, 2019, 48(7): 742004-0742004(8). doi: 10.3788/IRLA201948.0742004
Qiu Xingwu. Microstructure and properties of Fe0.5NiCoCrCuTi high entropy alloy coating prepared by laser cladding[J]. Infrared and Laser Engineering, 2019, 48(7): 742004-0742004(8). doi: 10.3788/IRLA201948.0742004
Citation: Qiu Xingwu. Microstructure and properties of Fe0.5NiCoCrCuTi high entropy alloy coating prepared by laser cladding[J]. Infrared and Laser Engineering, 2019, 48(7): 742004-0742004(8). doi: 10.3788/IRLA201948.0742004

激光熔覆Fe0.5NiCoCrCuTi高熵合金涂层的微观结构及性能

doi: 10.3788/IRLA201948.0742004
基金项目: 

德阳市重点科学技术研究项目(2018SZY120);四川建筑职业技术学院科技项目(2019KJ01)

详细信息
    作者简介:

    邱星武(1982-),男,副教授,博士,主要从事新材料及材料表面激光改性方面的研究。Email:fallenrain922@163.com

  • 中图分类号: TN249

Microstructure and properties of Fe0.5NiCoCrCuTi high entropy alloy coating prepared by laser cladding

  • 摘要: 采用激光熔覆工艺在40Cr钢表面制备了Fe0.5NiCoCrCuTi高熵合金涂层,利用带有能谱的扫描电子显微镜(SEM/EDS)、显微/维氏硬度计、摩擦磨损试验机、电化学工作站等对Fe0.5NiCoCrCuTi高熵合金微观结构进行分析并测试其硬度、耐磨性能、耐蚀性能。结果表明:Fe0.5NiCoCrCuTi高熵合金试样主要由涂层、热影响区及基体组成,涂层无气孔、裂纹等缺陷,与基体呈冶金结合;涂层主要由两种形貌的片状组织组成,晶粒排列紧密,晶粒表面分布着细小的粒子;涂层出现元素偏析,但程度较小;细晶强化、固溶强化、析出强化的共同作用使得Fe0.5NiCoCrCuTi涂层具有高硬度,表面最高硬度为857 HV,约为基体40Cr钢的3.3倍,高硬度及细小尺度析出物为涂层的耐磨性提供了保证;Fe0.5NiCoCrCuTi高熵合金涂层在3.5% NaCl和0.5 mol/L H2SO4溶液中的耐蚀性能优异,与304不锈钢相比,自腐蚀电流密度降低两三个数量级,自腐蚀电位分别正移0.230、0.161 V。
  • [1] Yeh J W, Chen S K, Gan J Y, et al. Formation of simple crystal structures in solid-solution alloys with multi-principal metallic elements[J]. Metallurgical and Materials Transactions A, 2004, 35A:2533-2536.
    [2] Yeh J W, Chen S K, LIN S J, et al. Nanostructured high-entropy alloys with multi-principal elements-novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6:299-303.
    [3] Pham Thihongnga, Liu Hongxi, Zhang Xiaowei, et al. Microstructure and high-temperature wear behaviors of Co/TiC laser coatings on die steel[J]. Optics and Precision Engineering, 2013, 21(8):2048-2055. (in Chinese)
    [4] Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534:227-230.
    [5] Ma Chen, Ma Zhuang, Gao Lihong, et al. Laser damage mechanism of flake graphite modified phenolic resin coating[J]. Chinese Optics, 2017, 10(2):249-255. (in Chinese)
    [6] Qiu X W, Wu M J, Qi Y, et al. Microstructure and corrosion resistance of Al2CrFeCoCuNixTi high entropy alloy coatings prepared by laser cladding[J]. Infrared and Laser Engineering, 2018, 47(7):0706008.
    [7] Qiu X W, Huang C X, Wu M J, et al. Structure and properties of AlCrFeNiCuTi six principal elements equimolar alloy[J]. Journal of Alloys and Compounds, 2016, 658:1-5.
    [8] Hsu Y J, Chiang W C. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry and Physics, 2005, 92:112-117.
    [9] An Xulong, Liu Qibin, Zheng bo. Microstructure and properties of laser cladding high entropy alloy MoFeCrTiWAlxSiy coating[J]. Infrared and Laser Engineering, 2014, 43(4):1140-1144. (in Chinese)
    [10] Liu Hongxi, Tao Xiaode, Zhang Xiaowei, et al. Microstructure and interface distribution of Fe-Cr-Si-B-C laser cladding alloy coatings assisted by mechanical vibration[J]. Optics and Precision Engineering, 2015, 23(8):2192-2202. (in Chinese)
    [11] Zhang Min, Liu Chang, Ren Bo, et al. Microstructure and mechanical properties of porous Ni alloy fabricated by laser 3D printing[J]. Chinese Optics, 2016, 9(3):335-341. (in Chinese)
    [12] Liu Hongxi, Leng Ning, Zhang Xiaowei, et al. Microstructure and wear behavior of WC/Co50 composite coatings on 40Cr cutting tool surface prepared by laser cladding[J]. Infrared and Laser Engineering, 2016, 45(1):0120001. (in Chinese)
    [13] Zhang A J, Han J S, Su B, et al. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite[J]. Materials Design, 2017, 114:253-263.
    [14] Li Wei, Liu Guizhong, Guo Jingjie. Microstructure and electrochemical properties of AlxFeCoNiCrTi high-entropy alloys[J]. Foundry, 2009, 58(5):431-435. (in Chinese)
    [15] Luo Xiaoyan, Liu Guizhong, Li Wei, et al. Microstructure and electrochemical properties of AlFeCoNiCrTiVx high-entropy alloys[J]. Corrosion Protection, 2010, 31(5):355-358. (in Chinese)
  • [1] 姚喆赫, 戴温克, 邹朋津, 余沛坰, 王发博, 迟一鸣, 孙振强, 张群莉, 姚建华.  超声对激光熔覆WC颗粒强化涂层耐磨防腐性能的影响(特邀) . 红外与激光工程, 2024, 53(1): 20230542-1-20230542-12. doi: 10.3788/IRLA20230542
    [2] 杨广峰, 郜峰, 崔静, 薛安源.  扫描速度对300M钢熔覆C276涂层组织及性能的影响 . 红外与激光工程, 2023, 52(1): 20220328-1-20220328-9. doi: 10.3788/IRLA20220328
    [3] 王凯, 李多生, 叶寅, 罗军明, 龙思海, 官冀原, 谢非彤, 姜苏航, 王明娣, 吴宁.  航空铝合金表面涂层无损激光清洗研究 . 红外与激光工程, 2022, 51(12): 20210936-1-20210936-9. doi: 10.3788/IRLA20210936
    [4] 刘均环, 朱卫华, 朱红梅, 施佳鑫, 管旺旺, 陈志勇, 何彬, 王新林.  掺杂低含量SiO2对激光熔覆CaP生物陶瓷涂层性能的影响 . 红外与激光工程, 2019, 48(6): 606007-0606007(7). doi: 10.3788/IRLA201948.0606007
    [5] 孙楚光, 刘均环, 陈志勇, 朱卫华, 朱红梅, 何彬, 王新林.  钛合金表面激光熔覆制备低含硅量生物陶瓷涂层 . 红外与激光工程, 2018, 47(3): 306003-0306003(7). doi: 10.3788/IRLA201847.0306003
    [6] 邱星武, 吴明军, 戚燕, 刘春阁, 张云鹏, 黄崇湘.  激光熔覆Al2CrFeCoCuNixTi高熵合金涂层的组织及耐蚀性能 . 红外与激光工程, 2018, 47(7): 706008-0706008(8). doi: 10.3788/IRLA201847.0706008
    [7] 刘洪喜, 刘子峰, 张晓伟, 石海, 蒋业华.  稳恒磁场设计及电流强度对激光熔覆Fe55涂层微结构的影响 . 红外与激光工程, 2017, 46(4): 406001-0406001(7). doi: 10.3788/IRLA201746.0406001
    [8] 钦兰云, 庞爽, 杨光, 王超, 王维.  激光沉积修复ZL114A铝合金的显微组织及显微硬度研究 . 红外与激光工程, 2017, 46(5): 506004-0506004(6). doi: 10.3788/IRLA201746.0506004
    [9] 杨光, 王文东, 钦兰云, 任宇航, 李长富, 王维.  退火温度及保温时间对激光沉积制造TA15钛合金微观组织和显微硬度的影响 . 红外与激光工程, 2017, 46(8): 806006-0806006(6). doi: 10.3788/IRLA201746.0806006
    [10] 王彦芳, 李豪, 石志强, 肖亚梅, 孙旭, 王亭.  激光熔覆高耐蚀Fe基固溶体合金涂层 . 红外与激光工程, 2017, 46(8): 806001-0806001(5). doi: 10.3788/IRLA201746.0806001
    [11] 卞宏友, 雷洋, 李英, 杨光, 钦兰云, 王维, 韩双隆.  感应预热对激光沉积修复TA15钛合金显微组织和残余应力的影响 . 红外与激光工程, 2016, 45(7): 705003-0705003(6). doi: 10.3788/IRLA201645.0705003
    [12] 刘洪喜, 冷凝, 张晓伟, 蒋业华.  40Cr刀具表面激光熔覆WC/Co50复合涂层的微观组织及其磨损性能 . 红外与激光工程, 2016, 45(1): 120001-0120001(6). doi: 10.3788/IRLA201645.0120001
    [13] 焦阳, 何卫锋, 孙岭, 周留成, 聂祥樊, 罗思海, 李靖.  激光喷丸与渗铝复合工艺提高K417 合金力学性能研究 . 红外与激光工程, 2015, 44(8): 2274-2279.
    [14] 李建忠, 黎向锋, 左敦稳, 许瑞华, 陈竹.  模拟研究离焦量对7050铝合金Al/Ti熔覆过程的影响 . 红外与激光工程, 2015, 44(4): 1126-1133.
    [15] 李靖, 李军, 何卫锋, 李玉琴, 聂祥樊, 何光宇.  TC17 钛合金激光多次冲击强化后组织和力学性能研究 . 红外与激光工程, 2014, 43(9): 2889-2895.
    [16] 王维夫, 胡霄乐.  预氮化+熔覆复合处理制备微纳尺度TiN增强复合涂层 . 红外与激光工程, 2014, 43(2): 600-604.
    [17] 唐淑君, 刘洪喜, 张晓伟, 王传琦, 蔡川雄, 蒋业华.  H13钢表面激光选区熔覆Ni-Al金属间化合物涂层的组织与性能 . 红外与激光工程, 2014, 43(5): 1621-1626.
    [18] 杨光, 王向明, 王维, 钦兰云, 卞宏友.  激光熔覆制备TiC颗粒增强涂层的组织和性能 . 红外与激光工程, 2014, 43(3): 795-799.
    [19] 安旭龙, 刘其斌, 郑波.  激光熔覆制备高熵合金MoFeCrTiWAlxSiy涂层的组织与性能 . 红外与激光工程, 2014, 43(4): 1140-1144.
    [20] 王传琦, 刘洪喜, 周荣, 蒋业华, 张晓伟.  机械振动辅助激光重熔Ni基合金TiC复合涂层微观组织研究 . 红外与激光工程, 2013, 42(10): 2651-2657.
  • 加载中
计量
  • 文章访问数:  340
  • HTML全文浏览量:  36
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-11
  • 修回日期:  2019-03-21
  • 刊出日期:  2019-07-25

激光熔覆Fe0.5NiCoCrCuTi高熵合金涂层的微观结构及性能

doi: 10.3788/IRLA201948.0742004
    作者简介:

    邱星武(1982-),男,副教授,博士,主要从事新材料及材料表面激光改性方面的研究。Email:fallenrain922@163.com

基金项目:

德阳市重点科学技术研究项目(2018SZY120);四川建筑职业技术学院科技项目(2019KJ01)

  • 中图分类号: TN249

摘要: 采用激光熔覆工艺在40Cr钢表面制备了Fe0.5NiCoCrCuTi高熵合金涂层,利用带有能谱的扫描电子显微镜(SEM/EDS)、显微/维氏硬度计、摩擦磨损试验机、电化学工作站等对Fe0.5NiCoCrCuTi高熵合金微观结构进行分析并测试其硬度、耐磨性能、耐蚀性能。结果表明:Fe0.5NiCoCrCuTi高熵合金试样主要由涂层、热影响区及基体组成,涂层无气孔、裂纹等缺陷,与基体呈冶金结合;涂层主要由两种形貌的片状组织组成,晶粒排列紧密,晶粒表面分布着细小的粒子;涂层出现元素偏析,但程度较小;细晶强化、固溶强化、析出强化的共同作用使得Fe0.5NiCoCrCuTi涂层具有高硬度,表面最高硬度为857 HV,约为基体40Cr钢的3.3倍,高硬度及细小尺度析出物为涂层的耐磨性提供了保证;Fe0.5NiCoCrCuTi高熵合金涂层在3.5% NaCl和0.5 mol/L H2SO4溶液中的耐蚀性能优异,与304不锈钢相比,自腐蚀电流密度降低两三个数量级,自腐蚀电位分别正移0.230、0.161 V。

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回