留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于距离分辨的激光雷达技术研究进展

陈剑彪 孙华燕 赵融生 孔舒亚 赵延仲 单聪淼

陈剑彪, 孙华燕, 赵融生, 孔舒亚, 赵延仲, 单聪淼. 基于距离分辨的激光雷达技术研究进展[J]. 红外与激光工程, 2019, 48(8): 805007-0805007(14). doi: 10.3788/IRLA201948.0805007
引用本文: 陈剑彪, 孙华燕, 赵融生, 孔舒亚, 赵延仲, 单聪淼. 基于距离分辨的激光雷达技术研究进展[J]. 红外与激光工程, 2019, 48(8): 805007-0805007(14). doi: 10.3788/IRLA201948.0805007
Chen Jianbiao, Sun Huayan, Zhao Rongsheng, Kong Shuya, Zhao Yanzhong, Shan Congmiao. Research development of range-resolved laser radar technology[J]. Infrared and Laser Engineering, 2019, 48(8): 805007-0805007(14). doi: 10.3788/IRLA201948.0805007
Citation: Chen Jianbiao, Sun Huayan, Zhao Rongsheng, Kong Shuya, Zhao Yanzhong, Shan Congmiao. Research development of range-resolved laser radar technology[J]. Infrared and Laser Engineering, 2019, 48(8): 805007-0805007(14). doi: 10.3788/IRLA201948.0805007

基于距离分辨的激光雷达技术研究进展

doi: 10.3788/IRLA201948.0805007
基金项目: 

国家自然科学基金(61302183)

详细信息
    作者简介:

    陈剑彪(1991-),男,博士生,主要从事光电信息处理及目标识别方面的研究。Email:general_chen2041@163.com

  • 中图分类号: TN958.98

Research development of range-resolved laser radar technology

  • 摘要: 激光雷达是对空间目标进行远距离高精度探测、跟踪监视的重要技术手段之一,基于距离分辨的激光雷达探测系统相比于传统的成像系统,具有整体结构简单、受大气干扰小等特点。国内外研究机构对该技术领域开展了大量研究,主要介绍了高分辨率回波探测及反射断层成像激光雷达的发展现状,总结和比较了国内外在理论算法、仿真分析、实验测试及实际应用等方面的进展,分析了二者的技术特点,展望了其发展前景。
  • [1] Sun J, Zhou Y. Short pulselength direct-detect laser reflective tomography imaging ladar:field results[C]//SPIE NanoScience+Engineering. International Society for Optics and Photonics, 2010, 7419:74190W.
    [2] Hu Yihua. Laser imaging technology for space target precise reconnaissance[J]. National Defense Science Technology, 2016, 37(1):30-36. (in Chinese)胡以华. 空间激光成像目标精确侦察技术[J]. 国防科技, 2016, 37(1):30-36.
    [3] Lin F, Wang J C, Lei W H, et al. Detection of barycenter of planar target based on laser reflective tomography[J]. Optics Communications, 2017, 402:540-544.
    [4] Chen V C, Ling H. Time-frequency transforms for radar imaging and signal analysis[D]. Boston MA:Artech House Inc, 2001.
    [5] Li Y, Wu Z. Targets recognition using subnanosecond pulse laser range profiles[J]. Optics Express, 2010, 18(16):16788-16796.
    [6] Steinvall O, Chevalier T. Range accuracy and resolution for laser radars[C]//SPIE, 2005, 5988:73-88.
    [7] Steinvall O K, Carlsson T. Three-dimensional laser radar modeling[C]//SPIE, 2001, 4377:23-34.
    [8] Steinvall O, Elmqvist M, Chevalier T, et al. Measurement and modeling of laser range profiling of small maritime targets[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI. International Society for Optics and Photonics, 2012, 8542:85420I.
    [9] Berginc G. Scattering models for 1-D-2-D-3-D laser imagery[J]. Optical Engineering, 2016, 56(3):031207.
    [10] Li Y, Wu Z, Gong Y. Laser range profile of the sphere[C]//Photonics Asia, 2010:078501J.
    [11] Li Y, Wu Z, Gong Y. Ultra-short pulse laser one-dimensional range profile of a cone[J]. Nuclear Inst Methods in Physics Research A, 2011, 637(1):S149-S152.
    [12] Gong Y, Li Y, Wu Z, et al. Analytical model of a laser range profile from rough convex quadric bodies of revolution[J]. J Opt Soc Am A Opt Image Sci Vis, 2012, 29(7):1383-1388.
    [13] Chen Jianbiao, Sun Huayan, Zhao Yanzhong. Simulation and experimental research on one dimensional lidar range profile of airborne target[J]. Laser Optoelectronics Progress, 2017, 54(7):318-325.
    [14] Steinvall O, Sjqvist L, Henriksson M, et al. High resolution ladar using time-correlated single-photon counting[C]//SPIE, 2008, 6950:695002.
    [15] Sjqvist L, Henriksson M, Jonsson P, et al. Time-of-flight range profiling using time-correlated single-photon counting[C]//Technologies for Optical Countermeasures IV. International Society for Optics and Photonics, 2007, 6738:67380N.
    [16] Steinvall O, Chevalier T, Grnwall C. Simulating the performance of laser imaging and range profiling of small surface vessels[C]//SPIE Defense, Security, and Sensing, 2013, 8731:87310U.
    [17] Steinvall O, Tulldahl M. Laser range profiling for small target recognition[C]//SPIE Defense+Security, 2016, 9832:98320E.
    [18] Jonsson P, Hedborg J, Henriksson M, et al. Reconstruction of time-correlated single-photon counting range profiles of moving objects[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications IX. International Society for Optics and Photonics, 2015, 9649:964905.
    [19] Sjqvist L, Allard L, Henriksson M, et al. Target discrimination strategies in optics detection[C]//SPIE Security+Defence. International Society for Optics and Photonics, 2013, 8898:8898K.
    [20] Heuvel J C V D, Pace P, Bekman H H P T, et al. Experimental validation of ship identification with a laser range profiler[C]//SPIE, 2008, 6950:23.
    [21] Van den Heuvel J C, Bekman H H P T, van Putten F J M, et al. Search-lidar demonstrator for detection of small sea-surface targets[C]//Laser Radar Technology and Applications XⅢ. International Society for Optics and Photonics, 2008, 6950:69500W.
    [22] Van den Heuvel J C, Schoemaker R M, Schleijpen R H M A. Identification of air and sea-surface targets with a laser range profiler[C]//Laser Radar Technology and Applications XIV. International Society for Optics and Photonics, 2009, 7323:73230Y.
    [23] Peterson R D, Schepler K L. Timing modulation of a 40-MHz laser-pulse train for target ranging and identification[J]. Applied Optics, 2003, 42(36):7191.
    [24] Ren M, Gu X, Liang Y, et al. Laser ranging at 1550 nm with 1 GHz sine-wave gated InGaAs/InP APD single-photon detector[J]. Optics Express, 2011, 19(14):13497-13502.
    [25] Wallace A M, Sung R C W, Buller G S, et al. Detecting and characterising returns in a pulsed ladar system[J]. Vision, Image and Signal Processing, IEE Proceedings, 2006, 153(2):160-172.
    [26] Wallace A M, Buller G S, Sung R C W, et al. Multi-spectral laser detection and ranging for range profiling and surface characterization[J]. Journal of Optics A Pure Applied Optics, 2005, 7(6):S438.
    [27] Warburton R E, Mccarthy A, Wallace A M, et al. Enhanced performance photon-counting time-of-flight sensor[J]. Optics Express, 2007, 15(2):423-429.
    [28] Mou Y, Wu Z S, Li Z J, et al. Geometric detection based on one-dimensional laser range profiles of dynamic conical target[J]. Applied Optics, 2014, 53(35):8335-8341.
    [29] Knight F K, Klick D, Ryan-Howard D P, et al. Laser radar reflective tomography utilizing a streak camera for precise range resolution[J]. Applied Optics, 1989, 28(12):2196-2198.
    [30] Parker J K, Craig E B, Klick D I, et al. Reflective tomography:images from range-resolved laser radar measurements[J]. Applied Optics, 1988, 27(13):2642-2643.
    [31] Knight F K, Kulkarni S R, Marino R M, et al. Tomographic techniques applied to laser radar reflective measurements[J]. Lincoln Laboratory Journal, 1989, 2(2):143-160.
    [32] Matson C L, Magee E P, Holland D E. Reflective tomography using a short-pulselength laser:system analysis for artificial satellite imaging[J]. Optical Engineering, 1995, 34(9):2811-2820.
    [33] Magee E P, Matson C L, Stone D. Comparison of techniques for image reconstruction using reflective tomography[C]//Image Reconstruction and Restoration. International Society for Optics and Photonics, 1994, 2302:95-103.
    [34] Henriksson M, Olofsson T, Grnwall C, et al. Optical reflectance tomography using TCSPC laser radar[C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI. International Society for Optics and Photonics, 2012, 8542:85420E.
    [35] Murray J T, Triscari J, Fetzer G, et al. Tomographic lidar[C]//Applications of Lasers for Sensing and Free Space Communications. Optical Society of America, 2010:LSWA1.
    [36] Qu Fuqi, Hu Yihua, Jiao Junjun, et al. Satellite-to-satellite lidar imaging using reflective tomography[J]. Acta Photonica Sinica, 2013, 42(1):48-53. (in Chinese)
    [37] Jin X, Sun J, Yan Y, et al. Imaging resolution analysis in limited-view Laser Radar reflective tomography[J]. Optics Communications, 2012, 285(10-11):2575-2579.
    [38] Ford S D, Matson C L. Projection registration in reflective tomography[C]//Digital Image Recovery and Synthesis IV. International Society for Optics and Photonics, 1999, 3815:189-199.
    [39] Jin X, Sun J, Yan Y, et al. Feature tracking for projection registration in laboratory-scale reflective tomography laser radar imaging[J]. Optics Communications, 2010, 283(18):3475-3480.
    [40] Jin X, Sun J, Yan Y, et al. Application of phase retrieval algorithm in reflective tomography laser radar imaging[J]. Chinese Optics Letters, 2011, 9(1):012801.
    [41] Gu Yu, Hu Yihua, Hao Shiqi, et al. Study on influence of filter back-projection on laser reflective tomography[J]. Laser Infrared, 2015, 45(12):1500-1504. (in Chinese)
    [42] Gu Yu, Hu Yihua, Hao Shiqi, et al. Application of variational Bayesian deconvolution method in laser reflective tomography imaging[J]. Acta Optica Sinica, 2016, 36(6):0611003. (in Chinese)
    [43] Wang J C, Zhou S W, Shi L, et al. Image quality analysis and improvement of Ladar reflective tomography for space object recognition[J]. Optics Communications, 2016, 359:177-183.
    [44] Lin Fang, Wang Jincheng, Zhang Hua, et al. Application of multi-frame iterative blind deconvolution method in laser reflective tomography imaging[J]. Acta Optica Sinica, 2017, 37(9):0911001.
    [45] Lasche J B, Hanes S A, Rowland K B, et al. Imaging with heterodyne laser radar and reflection tomography[C]//High-Resolution Wavefront Control:Methods, Devices, and Applications Ⅱ. International Society for Optics and Photonics, 2000, 4124:275-286.
    [46] Matson C L, Mosley D E. Reflective tomography reconstruction of satellite features-field results[J]. Applied Optics, 2001, 40(14):2290-2296.
  • [1] 冯杰, 冯扬, 刘翔, 邓陈进, 喻忠军.  远距离监视激光雷达动目标快速检测 . 红外与激光工程, 2023, 52(4): 20220506-1-20220506-9. doi: 10.3788/IRLA20220506
    [2] 张瀚夫, 刘杰, 安其昌, 王建立.  基于旋转扫描的高分辨率光子计数测距方法 . 红外与激光工程, 2023, 52(11): 20230112-1-20230112-9. doi: 10.3788/IRLA20230112
    [3] 徐国权, 李广英, 万建伟, 许可, 董光焰, 程光华, 王兴, 韩文杰, 马燕新.  脉冲调制激光雷达水下成像系统 . 红外与激光工程, 2022, 51(3): 20210204-1-20210204-8. doi: 10.3788/IRLA20210204
    [4] 黄宜帆, 贺岩, 胡善江, 侯春鹤, 朱小磊, 李凯鹏, 刘芳华, 陈勇强, 郭守川.  海洋激光雷达图像处理提取海水深度的方法 . 红外与激光工程, 2021, 50(6): 20211034-1-20211034-8. doi: 10.3788/IRLA20211034
    [5] 刘壮, 王超, 江伦, 史浩东.  低空高分辨率激光雷达光学系统设计 . 红外与激光工程, 2021, 50(1): 20200117-1-20200117-7. doi: 10.3788/IRLA20200117
    [6] 郭静菁, 费晓燕, 葛鹏, 周安然, 王磊, 李正琦, 盛磊.  基于全光纤光子计数激光雷达的高分辨率三维成像 . 红外与激光工程, 2021, 50(7): 20210162-1-20210162-10. doi: 10.3788/IRLA20210162
    [7] 田鹤, 毛宏霞, 刘铮, 曾铮.  机载逆合成孔径激光雷达微动目标稀疏成像 . 红外与激光工程, 2020, 49(S2): 20200190-20200190. doi: 10.3788/IRLA20200190
    [8] 曹杰, 郝群, 张芳华, 徐辰宇, 程阳, 张佳利, 陶禹, 周栋, 张开宇.  APD三维成像激光雷达研究进展 . 红外与激光工程, 2020, 49(9): 20190549-1-20190549-10. doi: 10.3788/IRLA20190549
    [9] 龚道然, 李思宁, 姜鹏, 刘迪, 孙剑峰.  激光雷达三维距离像超分辨重构方法研究 . 红外与激光工程, 2020, 49(8): 20190511-1-20190511-7. doi: 10.3788/IRLA20190511
    [10] 刘迪, 孙剑峰, 姜鹏, 高尚, 周鑫, 王鹏辉, 王骐.  GM-APD激光雷达距离像邻域KDE重构 . 红外与激光工程, 2019, 48(6): 630001-0630001(6). doi: 10.3788/IRLA201948.0630001
    [11] 董俊发, 刘继桥, 朱小磊, 毕德仓, 竹孝鹏, 陈卫标.  星载高光谱分辨率激光雷达的高光谱探测分光比优化分析 . 红外与激光工程, 2019, 48(S2): 1-6. doi: 10.3788/IRLA201948.S205001
    [12] 杨彪, 胡以华.  代数迭代法在激光反射断层成像目标重构中的应用 . 红外与激光工程, 2019, 48(7): 726002-0726002(7). doi: 10.3788/IRLA201948.0726002
    [13] 胡烜, 李道京, 田鹤, 赵绪锋.  激光雷达信号相位误差对合成孔径成像的影响和校正 . 红外与激光工程, 2018, 47(3): 306001-0306001(12). doi: 10.3788/IRLA201847.0306001
    [14] 夏文泽, 韩绍坤, 曹京亚, 王亮, 翟倩.  激光雷达距离估计技术 . 红外与激光工程, 2016, 45(9): 906005-0906005(6). doi: 10.3788/IRLA201645.0906005
    [15] 吕丹, 孙剑峰, 李琦, 王骐.  基于激光雷达距离像的目标3D姿态估计 . 红外与激光工程, 2015, 44(4): 1115-1120.
    [16] 张毅, 王勇, 岳江, 柏连发.  DMD编码哈达玛变换高灵敏成像 . 红外与激光工程, 2015, 44(12): 3819-3824.
    [17] 王强, 张勇, 郝利丽, 靳辰飞, 杨旭, 徐璐, 杨成华, 赵远.  基于奇相干叠加态的超分辨率量子激光雷达 . 红外与激光工程, 2015, 44(9): 2569-2574.
    [18] 李小珍, 吴玉峰, 郭亮, 曾晓东.  合成孔径激光雷达下视三维成像构型及算法 . 红外与激光工程, 2014, 43(10): 3276-3281.
    [19] 姜成昊, 杨进华, 张丽娟, 李祥.  新型多普勒成像激光雷达原理设计与仿真 . 红外与激光工程, 2014, 43(2): 411-416.
    [20] 赵培娥, 罗雄, 曹文勇, 赵彬, 冯立天, 李晓锋, 谭锦, 周鼎富.  应用Zoom FFT方法提高相干测风激光雷达频谱分辨率 . 红外与激光工程, 2014, 43(1): 98-102.
  • 加载中
计量
  • 文章访问数:  521
  • HTML全文浏览量:  147
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-11
  • 修回日期:  2019-04-21
  • 刊出日期:  2019-08-25

基于距离分辨的激光雷达技术研究进展

doi: 10.3788/IRLA201948.0805007
    作者简介:

    陈剑彪(1991-),男,博士生,主要从事光电信息处理及目标识别方面的研究。Email:general_chen2041@163.com

基金项目:

国家自然科学基金(61302183)

  • 中图分类号: TN958.98

摘要: 激光雷达是对空间目标进行远距离高精度探测、跟踪监视的重要技术手段之一,基于距离分辨的激光雷达探测系统相比于传统的成像系统,具有整体结构简单、受大气干扰小等特点。国内外研究机构对该技术领域开展了大量研究,主要介绍了高分辨率回波探测及反射断层成像激光雷达的发展现状,总结和比较了国内外在理论算法、仿真分析、实验测试及实际应用等方面的进展,分析了二者的技术特点,展望了其发展前景。

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回