留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Visible light optical coherence tomography in biomedical imaging

Ji Yi

Ji Yi. Visible light optical coherence tomography in biomedical imaging[J]. 红外与激光工程, 2019, 48(9): 902001-0902001(9). doi: 10.3788/IRLA201948.0902001
引用本文: Ji Yi. Visible light optical coherence tomography in biomedical imaging[J]. 红外与激光工程, 2019, 48(9): 902001-0902001(9). doi: 10.3788/IRLA201948.0902001
Ji Yi. Visible light optical coherence tomography in biomedical imaging[J]. Infrared and Laser Engineering, 2019, 48(9): 902001-0902001(9). doi: 10.3788/IRLA201948.0902001
Citation: Ji Yi. Visible light optical coherence tomography in biomedical imaging[J]. Infrared and Laser Engineering, 2019, 48(9): 902001-0902001(9). doi: 10.3788/IRLA201948.0902001

Visible light optical coherence tomography in biomedical imaging

doi: 10.3788/IRLA201948.0902001
详细信息
    作者简介:

    Ji Yi(1983-), male, PhD. Dr. Yi's research is focused on novel optical techniques for early disease detection, and monitoring disease progression and prognosis. Among other inventions, he developed various imaging methods that enable non-invasive detection of nanoscale structural alterations in tissue and the local oxygen metabolism. His research is at the interface of biophotonics, physics, engineering, biology and medicine, that ultimately aims to improve the health care of general public. Email:jiyi@bu.edu

  • 中图分类号: R318

Visible light optical coherence tomography in biomedical imaging

More Information
    Author Bio:

    Ji Yi(1983-), male, PhD. Dr. Yi's research is focused on novel optical techniques for early disease detection, and monitoring disease progression and prognosis. Among other inventions, he developed various imaging methods that enable non-invasive detection of nanoscale structural alterations in tissue and the local oxygen metabolism. His research is at the interface of biophotonics, physics, engineering, biology and medicine, that ultimately aims to improve the health care of general public. Email:jiyi@bu.edu

  • 摘要: Optical coherence tomography (OCT) is a widely used optical imaging modality for three-dimensional structural and functional imaging. The prevalent OCT systems use an invisible light laser source beyond 800 nm and up to 1 500 nm to allow deep image penetration in biological tissues. Recently, visible light OCT (vis-OCT) using a short wavelength range between 400 nm to 700 nm has gained significant progress and attracted interest in its unique capability of high resolution imaging and spatially-resolved spectroscopy. In this article, we will briefly review the recent advance of vis-OCT imaging and its potential biomedical applications.
  • [1] Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography-principles and applications[J]. Rep Prog Phys, 2003, 66:239-303.
    [2] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254:1178-1181.
    [3] Leitgeb R A, Werkmeister R M, Blatter C, et al. Doppler optical coherence tomography[J]. Prog Retin Eye Res, 2014, 41:26-43.
    [4] Drexler W, Fujimoto J G. Optical Coherence Tomography:Technology and Applications[M]. Berlin:Springer, 2008:621-651.
    [5] Srinivasan V J, Sakad?i? S, Gorczynska I, et al. Quantitative cerebral blood flow with optical coherence tomography[J]. Opt Express, 2010, 18:2477-2494.
    [6] Kashani A H, Chen C L, Gahm J K, et al. Optical coherence tomography angiography:A comprehensive review of current methods and clinical applications[J]. Progress in Retinal and Eye Research, 2017, 60:66-100.
    [7] Carlo T E, Romano A, Waheed N K, et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 2015, 1:5.
    [8] Baran U, Wang R K. Review of optical coherence tomography based angiography in neuroscience[J]. Neurophotonics, 2016, 3:010902.
    [9] Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography 2013; a review[Invited] [J]. Biomed Opt Express, 2017, 8:1838-1873.
    [10] Baumann B. Polarization sensitive optical coherence tomography:A review of technology and applications[J]. Applied Sciences, 2017, 7:474.
    [11] Siddiqui M, Nam A S, Tozburun S, et al. High-speed optical coherence tomography by circular interferometric ranging[J]. Nature Photonics, 2018, 12:111-116.
    [12] Shu X, Beckmann L J, Zhang H F. Visible-light optical coherence tomography:a review[J]. Journal of Biomedical Optics, 2017, 22:121707.
    [13] Povazay B, Apolonski A A, Unterhuber A, et al. Visible light optical coherence tomography[C]//Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, International Society for Optics and Photonics, 2002, 4619:90-94.
    [14] Yi J, Chen S, Shu X, et al. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy[J]. Biomed Opt Express, 2015, 6:3701-3713.
    [15] Kho A, Srinivasan V J. Compensating spatially dependent dispersion in visible light OCT[J]. Opt Lett, 2019, 44:775-778.
    [16] Zhang T, Kho A M, Srinivasan V J. Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking[J]. Biomed Opt Express, 2019, 10:2918-2931.
    [17] Ju M J, Huang C, Wahl D J, et al. Visible light sensorless adaptive optics for retinal structure and fluorescence imaging[J]. Opt Lett, 2018, 43:5162-5165.
    [18] Coquoz S, Marchand P J, Bouwens A, et al. Label-free three-dimensional imaging of Caenorhabditis elegans with visible optical coherence microscopy[J]. PLOS ONE, 2017, 12:e0181676.
    [19] Marchand P J, Szlag D, Bouwens A, et al. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range[J]. Journal of Biomedical Optics, 2018, 23:036012.
    [20] Merkle C W. Chong S P, Kho A M, et al. Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo[J]. Opt Lett, 2018, 43:198-201.
    [21] Marchand P J, Bouwens A, Szlag D, et al. Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography[J]. Biomed Opt Express, 2017, 8:3343-3359.
    [22] Pi S, Camino A, Wei X, et al. Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography[J]. Biomed Opt Express, 2018, 9:5851-5862.
    [23] Chen S, Yi J, Liu W, et al. Monte Carlo investigation of optical coherence tomography retinal oximetry[J]. IEEE Transactions on Biomedical Engineering, 2015, 62:2308-2315.
    [24] Yi J, Wei Q, Liu W, et al. Visible-light optical coherence tomography for retinal oximetry[J]. Opt Lett, 2013, 38:1796-1798.
    [25] Yi J, Backman V. Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography[J]. Opt Lett, 2012, 37:4443-4445.
    [26] Faber D J, Aalders M C G, Mik E G, et al. Oxygen saturation-dependent absorption and scattering of blood[J]. Phys Rev Lett, 2004, 93:028102.
    [27] Leitgeb R, Wojtkowski M, Kowalczyk A, et al. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography[J]. Opt Lett, 2000, 25:820-822.
    [28] Morgner U, Drexler W, Krtner F X, et al. Spectroscopic optical coherence tomography[J]. Opt Lett, 2000, 25:111-113.
    [29] Yi J, Li X. Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography[J]. Opt Lett, 2010, 35:2094-2096.
    [30] Robles F E, Chowdhury S, Wax A. Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics[J]. Biomed Opt Express, 2010, 1:310-317.
    [31] Robles F E, Wilson C, Grant G, et al. Molecular imaging true-colour spectroscopic optical coherence tomography[J]. Nature Photonics, 2011, 5:744-747.
    [32] Yi J, Liu W, Chen S, et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation[J]. Light:Science Applications, 2015, 4:e334.
    [33] Chong S P, Merkle C W, Leahy C, et al. Cerebral metabolic rate of oxygen (CMRO2) assessed by combined Doppler and spectroscopic OCT[J]. Biomed Opt Express, 2015, 6:3941-3951.
    [34] Yi J, Chen S, Backman V, et al. In vivo functional microangiography by visible-light optical coherence tomography[J]. Biomed Opt Express, 2014, 5:3603-3612.
    [35] Chen S, Yi J, Zhang H F. Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography[J]. Biomed Opt Express, 2015, 6:2840-2853.
    [36] Liu R, Song W, Backman V, et al. Quantitative quality-control metrics for in vivo oximetry in small vessels by visible light optical coherence tomography angiography[J]. Biomed Opt Express, 2019, 10:465-486.
    [37] Liu R, Winkelmann J A, Spicer G, et al. Single capillary oximetry and tissue ultrastructural sensing by dual-band dual-scan inverse spectroscopic optical coherence tomography[J]. Light:ScienceApplications, 2018, 7:1-13.
    [38] Liu W, Wang S, Soetikno B, et al. Increased retinal oxygen metabolism precedes microvascular alterations in type 1 diabetic mice[J]. Invest Ophthalmol Vis Sci, 2017, 58:981-989.
    [39] Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model|Scientific Reports. https://www.nature.com/articles/srep16752.
    [40] Song W, Fu S, Song S, et al. Longitudinal detection of retinal alterations by visible and near-infrared optical coherence tomography in a dexamethasone-induced ocular hypertension mouse model[J]. Neurophotonics, 2019, 6:041103.
    [41] Pi S, Hormel T T, Wei X, et al. Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography[J]. Neurophotonics, 2019, 6:041104.
    [42] Soetikno B T, Shu X, Liu Q, et al. Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation[J].Biomed Opt Express, 2017, 8:3571-3582.
    [43] Chen S, Liu Q, Shu X, et al. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography[J]. Biomed Opt Express, 2016, 7:3377-3389.
    [44] Chen S, Shu X, Nesper P L, et al. Retinal oximetry in humans using visible-light optical coherence tomography[Invited] [J]. Biomed Opt Express, 2017, 8:1415-1429.
    [45] Boustany N N, Boppart S A, Backman V. Microscopic imaging and spectroscopy with scattered light[J]. Annual Review of Biomedical Engineering, 2010, 12:285-314.
    [46] Barer R, Tkaczyk S. Refractive index of concentrated protein solutions[J]. Nature, 1954, 173:821-822.
    [47] Yi J, Radosevich A J, Rogers J D, et al. Can OCT be sensitive to nanoscale structural alterations in biological tissue[J]. Opt Express, 2013, 21:9043-9059.
    [48] Cherkezyan L, Capoglu I, Subramanian H, et al. Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations[J]. Phys Rev Lett, 2013, 111:033903.
    [49] Radosevich A J, Yi J, Rogers J D, et al. Structural length-scale sensitivities of reflectance measurements in continuous random media under the Born approximation[J]. Opt Lett, 2012, 37:5220-5222.
    [50] Hunter M, Backman V, Popescu G, et al. Tissue self-affinity and polarized light scattering in the born approximation:A new model for precancer detection[J]. Phys Rev Lett, 2006, 97:138102.
    [51] Terry N G, Zhu Y, Rinehart M T, et al. Detection of dysplasia in Barrett's ssophagus with in vivo depth-resolved nuclear morphology measurements[J]. Gastroenterology, 2011, 140:42-50.
    [52] Qiu L, Pleskow D K, Chuttani R, et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus[J]. Nature Medicine, 2010, 16:603-606.
    [53] Mirabal Y N, Chang S K, Atkinson E N, et al. Reflectance spectroscopy for in vivo detection of cervical precancer[J]. Journal of Biomedical Optics, 2002, 7:587-595.
    [54] Canpolat M, Akman-Karakas A, Gkhan-Ocak G A, et al. Diagnosis and demarcation of skin malignancy using elastic light single-scattering spectroscopy:A pilot study[J]. Dermatologic Surgery, 2012, 38:215-223.
    [55] Lichtenegger A, Harper J D, Augustin M, et al. Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer x02019; s disease brain samples[J]. Biomed Opt Express, 2017, 8:4007-4025.
    [56] Harper D J, Konegger T, Augustin M, et al. Hyperspectral optical coherence tomography for in vivo visualization of melanin in the retinal pigment epithelium[J]. J Biophotonics, 2019:e201900153.
    [57] Harper D J, Augustin M, Lichtenegger A, et al. White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina[J]. Biomed Opt Express, 2018, 9:2115-2129.
    [58] Zhang X, Hu J, Knighton R W, et al. Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer[J]. Opt Express, 2011,19:19653-19659.
    [59] Chen S, Shu X, Yi J, et al. Dual-band optical coherence tomography using a single supercontinuum laser source[J]. Journal of Biomedical Optics, 2016, 21:066013.
    [60] Song W, Zhou L, Zhang S, et al. Fiber-based visible and near infrared optical coherence tomography (vnOCT) enables quantitative elastic light scattering spectroscopy in human retina[J]. Biomed Opt Express, 2018, 9:3464-3480.
    [61] Song W, Zhang L, Ness S, et al. Wavelength-dependent optical properties of melanosomes in retinal pigmented epithelium and their changes with melanin bleaching:a numerical study[J]. Biomed Opt Express, 2017, 8:3966-3980.
  • [1] 王敬雯, 尹子恺, 尹飞飞, 戴一堂.  高分辨率任意可重构微波光子滤波器 . 红外与激光工程, 2023, 52(10): 20230015-1-20230015-9. doi: 10.3788/IRLA20230015
    [2] 刘春雨, 丁祎, 刘帅, 樊星皓, 谢运强.  滤光片分光型高光谱相机发展现状及趋势(特邀) . 红外与激光工程, 2022, 51(1): 20210981-1-20210981-15. doi: 10.3788/IRLA20210981
    [3] 徐国权, 李广英, 万建伟, 许可, 董光焰, 程光华, 王兴, 韩文杰, 马燕新.  脉冲调制激光雷达水下成像系统 . 红外与激光工程, 2022, 51(3): 20210204-1-20210204-8. doi: 10.3788/IRLA20210204
    [4] Xu Baoxiang, Xiong Zhi, Huang Jixun, Yu Haicheng.  Research on method of improving magnetic field adaptability of high-precision IFOG . 红外与激光工程, 2021, 50(4): 20200239-1-20200239-8. doi: 10.3788/IRLA20200239
    [5] 胡斌, 李创, 相萌, 李亮亮, 戴昊斌, 姚佩, 李旭阳.  可展开空间光学望远镜技术发展及展望 . 红外与激光工程, 2021, 50(11): 20210199-1-20210199-16. doi: 10.3788/IRLA20210199
    [6] 马维喆, 董美蓉, 黄泳如, 童琪, 韦丽萍, 陆继东.  激光诱导击穿光谱的飞灰碳含量定量分析方法 . 红外与激光工程, 2021, 50(9): 20200441-1-20200441-10. doi: 10.3788/IRLA20200441
    [7] Fang Zeyuan, Yin Lu, Yan Mingjian, Han Zhigang, Shen Hua, Zhu Rihong.  Study on signal light transmission efficiency enhancement of backward pump-signal combiners in high-power fiber lasers . 红外与激光工程, 2020, 49(10): 20200014-1-20200014-10. doi: 10.3788/IRLA20200014
    [8] Lei Yu, Guo Fang.  Dual-mode camera using liquid-crystal microlens for high-resolution three-dimensional reconstruction . 红外与激光工程, 2020, 49(8): 20190540-1-20190540-9. doi: 10.3788/IRLA20190540
    [9] 蔡文涛, 李晶, 江海波, 孙秀辉, 杨若夫, 尹韶云.  基于非均匀采样的高分辨曲面投影计算全息方法 . 红外与激光工程, 2019, 48(5): 524004-0524004(6). doi: 10.3788/IRLA201948.0524004
    [10] 陈鹏, 毛志华, 陶邦一, 王天愚.  激光诱导荧光装置用于海水可溶性有机物测量 . 红外与激光工程, 2018, 47(9): 903004-0903004(10). doi: 10.3788/IRLA201847.0903004
    [11] 肖志涛, 娄世良, 耿磊, 王梦蝶, 吴骏, 张芳, 苏龙.  便携式免散瞳眼底相机光学系统设计 . 红外与激光工程, 2018, 47(8): 818001-0818001(8). doi: 10.3788/IRLA201847.0818001
    [12] 李博, 徐晓婷, 郑雪晴.  脂肪测量的近红外光谱研究 . 红外与激光工程, 2018, 47(S1): 50-54. doi: 10.3788/IRLA201847.S104003
    [13] 柏财勋, 李建欣, 周建强, 刘勤, 徐文辉.  基于微偏振阵列的干涉型高光谱偏振成像方法 . 红外与激光工程, 2017, 46(1): 136003-0136003(6). doi: 10.3788/IRLA201746.0138003
    [14] Hideyoshi Horimai, Lin Xiao, Liu Jinpeng, Tan Xiaodi.  High density holographic versatile disc (HVD) system using collinear technologies . 红外与激光工程, 2016, 45(9): 935006-0935006(6). doi: 10.3788/IRLA201645.0935006
    [15] 张月, 张琢, 苏云, 郑国宪.  宽谱段高分辨率低温成像光谱仪制冷系统设计 . 红外与激光工程, 2016, 45(3): 323001-0323001(8). doi: 10.3788/IRLA201645.0323001
    [16] 孙佳音, 李淳, 刘英, 李灿, 王建, 刘建卓, 孙强.  不同光栅常数下同心长波红外成像光谱仪对比 . 红外与激光工程, 2016, 45(7): 720002-0720002(6). doi: 10.3788/IRLA201645.0720002
    [17] 陈永和, 陈洪达, 傅雨田.  适用于微小卫星平台的小型可见光相机设计 . 红外与激光工程, 2015, 44(7): 2087-2092.
    [18] 汪逸群, 高志良.  成像光谱仪复合色散棱镜支撑设计与试验 . 红外与激光工程, 2014, 43(6): 1982-1987.
    [19] 郭澜涛, 牧凯军, 邓朝, 张振伟, 张存林.  太赫兹波谱与成像技术 . 红外与激光工程, 2013, 42(1): 51-56.
    [20] 张月, 周峰.  火星轨道轻小型高分辨率相机热分析与热设计 . 红外与激光工程, 2013, 42(11): 2979-2983.
  • 加载中
计量
  • 文章访问数:  530
  • HTML全文浏览量:  122
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-11
  • 修回日期:  2019-08-21
  • 刊出日期:  2019-09-25

Visible light optical coherence tomography in biomedical imaging

doi: 10.3788/IRLA201948.0902001
    作者简介:

    Ji Yi(1983-), male, PhD. Dr. Yi's research is focused on novel optical techniques for early disease detection, and monitoring disease progression and prognosis. Among other inventions, he developed various imaging methods that enable non-invasive detection of nanoscale structural alterations in tissue and the local oxygen metabolism. His research is at the interface of biophotonics, physics, engineering, biology and medicine, that ultimately aims to improve the health care of general public. Email:jiyi@bu.edu

  • 中图分类号: R318

摘要: Optical coherence tomography (OCT) is a widely used optical imaging modality for three-dimensional structural and functional imaging. The prevalent OCT systems use an invisible light laser source beyond 800 nm and up to 1 500 nm to allow deep image penetration in biological tissues. Recently, visible light OCT (vis-OCT) using a short wavelength range between 400 nm to 700 nm has gained significant progress and attracted interest in its unique capability of high resolution imaging and spatially-resolved spectroscopy. In this article, we will briefly review the recent advance of vis-OCT imaging and its potential biomedical applications.

English Abstract

参考文献 (61)

目录

    /

    返回文章
    返回