留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型功能超颖表面波前调制技术的发展与应用(特邀)

黄玲玲 魏群烁 王涌天

黄玲玲, 魏群烁, 王涌天. 新型功能超颖表面波前调制技术的发展与应用(特邀)[J]. 红外与激光工程, 2019, 48(10): 1002001-1002001(16). doi: 10.3788/IRLA201948.1002001
引用本文: 黄玲玲, 魏群烁, 王涌天. 新型功能超颖表面波前调制技术的发展与应用(特邀)[J]. 红外与激光工程, 2019, 48(10): 1002001-1002001(16). doi: 10.3788/IRLA201948.1002001
Huang Lingling, Wei Qunshuo, Wang Yongtian. Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)[J]. Infrared and Laser Engineering, 2019, 48(10): 1002001-1002001(16). doi: 10.3788/IRLA201948.1002001
Citation: Huang Lingling, Wei Qunshuo, Wang Yongtian. Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)[J]. Infrared and Laser Engineering, 2019, 48(10): 1002001-1002001(16). doi: 10.3788/IRLA201948.1002001

新型功能超颖表面波前调制技术的发展与应用(特邀)

doi: 10.3788/IRLA201948.1002001
基金项目: 

北京市卓越青年科学家项目(BJJWZYJH01201910007022);国家自然科学基金面上项目(61775019);北京市科技新星(Z171100001117047);北京市面上项目(4172057);教育部霍英东高校教师基金(161009)

详细信息
    作者简介:

    黄玲玲(1986-),女,教授,博士生导师,博士,主要从事微纳光学、计算全息、表面等离激元及深度学习等方面的研究。Email:huanglingling@bit.edu.cn;魏群烁(1993-),男,博士,主要从事超颖表面与全息技术方面的研究。Email:weiqunshuo@bit.edu.cn

    黄玲玲(1986-),女,教授,博士生导师,博士,主要从事微纳光学、计算全息、表面等离激元及深度学习等方面的研究。Email:huanglingling@bit.edu.cn;魏群烁(1993-),男,博士,主要从事超颖表面与全息技术方面的研究。Email:weiqunshuo@bit.edu.cn

    通讯作者: 王涌天(1957-),男,教授,博士生导师,博士,主要从事技术光学和虚拟现实等方面的研究。Email:wyt@bit.edu.cn
  • 中图分类号: TN202

Development and applications of wavefront modulation technology based on new functional metasurfaces(Invited)

  • 摘要: 超颖表面作为一类智能表面,通常由特殊设计、加工而得到的特征尺寸接近或小于波长的亚波长纳米天线阵列构成。超颖表面能够实现光场的振幅、相位和偏振的人为调控,具有超薄、超小像素、宽带、低损耗、易加工等优势,设计灵活,功能强大。文中针对超颖表面在全息显示、波前调制和偏振转换、主动可调、非线性波前调控等方向进行综述,并展望未来发展趋势。超颖表面作为一种超薄的、微型化的波前调制器件,具有极大的信息容量,且更能适应未来高度集成的微型光电系统的发展要求,在全息显示、光束整形、涡旋光束的产生、数据存储、加密与防伪、超透镜与色散控制、彩色印刷、非对称传输、非线性光学、光的自旋霍尔效应、光通信与集成光电子学等应用领域提供了潜在的可行性和新的视角,有望取代传统光电器件,展现出了广阔的发展前景。
  • [1] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces:a review of fundamentals and applications[J]. Reports On Progress in Physics, 2018, 81(2):26401.
    [2] Hsiao H, Cheng H, Tsai D. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4):1600064.
    [3] Sung J, Lee G, Lee B. Progresses in the practical metasurface for holography and lens[J]. Nanophotonics, 2019, 8(10):1701-1718.
    [4] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics:from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1):139-152.
    [5] Genevet P, Capasso F. Holographic optical metasurfaces:a review of current progress[J]. Reports On Progress in Physics, 2015, 78(2):24401.
    [6] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3):1394-1399.
    [7] Huang K, Liu H, Restuccia S, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum[J]. Light-Science Applications, 2018, 7(3):17156.
    [8] Chen Y, Yang X, Gao J. Spin-selective second-harmonic vortex beam generation with babinet-inverted plasmonic metasurfaces[J]. Advanced Optical Materials, 2018, 6(19):1800646.
    [9] Pegard N C, Fleischer J W. Optimizing holographic data storage using a fractional Fourier transform[J]. Optics Letters, 2011, 36(13):2551-2553.
    [10] Goh X M, Zheng Y, Tan S J, et al. Three-dimensional plasmonic stereoscopic prints in full colour[J]. Nature Communications, 2014, 5:5361.
    [11] Jin L, Dong Z, Mei S, et al. Noninterleaved metasurface for (2(6)-1) spin-and wavelength-encoded holograms[J]. Nano Letters, 2018, 18(12):8016-8024.
    [12] Liu H, Yang B, Guo Q, et al. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram[J]. Science Advances, 2017, 3(9):e1701477.
    [13] Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3):220.
    [14] Wang S, Wu P C, Su V, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-232.
    [15] Nagasaki Y, Suzuki M, Takahara J. All-dielectric Dual-color pixel with subwavelength resolution[J]. Nano Letters, 2017, 17(12):7500-7506.
    [16] Li Z, Clark A W, Cooper J M. Dual color plasmonic pixels create a polarization controlled nano color palette[J]. Acs Nano, 2016, 10(1):492-498.
    [17] Duan X, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 2017, 8:14606.
    [18] Ji R, Wang S, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale, 2016, 8(15):8189-8194.
    [19] Xiao Y, Qian H, Liu Z. Nonlinear metasurface based on giant optical kerr response of gold quantum wells[J]. Acs Photonics, 2018, 5(5):1654-1659.
    [20] Li G, Wu L, Li K F, et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation[J]. Nano Letters, 2017, 17(12):7974-7979.
    [21] Minerbi E, Keren-Zur S, Ellenbogen T. Nonlinear metasurface fresnel zone plates for terahertz generation and manipulation[J]. Nano Letters, 2019, 19(9):6072-6077.
    [22] Wang J, Yang J, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7):488-496.
    [23] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
    [24] Pfeiffer C, Emani N K, Shaltout A M, et al. Efficient light bending with isotropic metamaterial huygens' surfaces[J]. Nano Letters, 2014, 14(5):2491-2497.
    [25] Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12):1504-1505.
    [26] Zheng G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308-312.
    [27] Sung J, Lee G, Choi C, et al. Single-layer bifacial metasurface:full-space visible light control[J]. Advanced Optical Materials, 2019, 7(8):1801748.
    [28] Deng Z, Deng J, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5):2885-2892.
    [29] Huang L, Chen X, Muehlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4:2808.
    [30] Chen Y, Yang X, Gao J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces[J]. Light-Science Applications, 2018, 7(1):1-10.
    [31] Franklin D, Modak S, Vazquez-Guardado A, et al. Covert infrared image encoding through imprinted plasmonic cavities[J]. Light-Science Applications, 2018, 7(1):93.
    [32] Kamali S M, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces:encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4):41056.
    [33] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22):27438-27451.
    [34] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35):12679-12683.
    [35] Huang L, Muhlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41):6444.
    [36] Wei Q, Huang L, Li X, et al. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 2017, 5(18):1700434.
    [37] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics:Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11):113901.
    [38] Zhao R, Sain B, Wei Q, et al. Multichannel vectorial holographic display and encryption[J]. Light-Science Applications, 2018, 7(1):95.
    [39] Wang B, Dong F, Li Q, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8):5235-5240.
    [40] Wan W, Gao J, Yang X. Full-Color Plasmonic metasurface holograms[J]. Acs Nano, 2016, 10(12):10671-10680.
    [41] Li X, Chen L, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11):e1601102.
    [42] Lim K T P, Liu H, Liu Y, et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control[J]. Nature Communications, 2019, 10(1):25.
    [43] Zhang Y, Shi L, Hu D, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 2019, 4(3):601-609.
    [44] Hu Y, Luo X, Chen Y, et al. 3D-Integrated metasurfaces for full-colour holography[J]. Light-Science Applications, 2019, 8(1):1-9.
    [45] Ji R, Wang S, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale, 2016, 8(15):8189-8194.
    [46] Pfeiffer C, Zhang C, Ray V, et al. High performance bianisotropic metasurfaces:asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2):23902.
    [47] Zhao Y, Belkin M A, Alu A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications, 2012, 3:870.
    [48] Frese D, Wei Q, Wang Y, et al. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces[J]. Nano Letters, 2019, 19(6):3976-3980.
    [49] Cheng J, Jafar-Zanjani S, Mosallaei H. All-dielectric ultrathin conformal metasurfaces:lensing and cloaking applications at 532 nm wavelength[J]. Scientific Reports, 2016, 6:38440.
    [50] Kamali S M, Arbabi A, Arbabi E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7:11618.
    [51] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths:Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194.
    [52] Han N, Huang L, Wang Y. Illusion and cloaking using dielectric conformal metasurfaces[J]. Optics Express, 2018, 26(24):31625-31635.
    [53] Mehmood M Q, Mei S, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13):2533.
    [54] Huang L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces[J]. Acs Photonics, 2017, 4(2):338-346.
    [55] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6):343-348.
    [56] Tan H, Deng J, Zhao R, et al. A Free-Space Orbital angular momentum multiplexing communication system based on a metasurface[J]. Laser Photonics Reviews, 2019, 13(6):1800278.
    [57] Lin Z, Li X, Zhao R, et al. High-efficiency bessel beam array generation by Huygens metasurfaces[J]. Nanophotonics, 2019, 8(6):1079-1085.
    [58] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29):5031-5036.
    [59] Jia S L, Wan X, Fu X J, et al. Low-reflection beam refractions by ultrathin Huygens metasurface[J]. Aip Advances, 2015, 5(6):67102.
    [60] Lee G, Yoon G, Lee S, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9):4237-4245.
    [61] Song X, Huang L, Tang C, et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(4):1701181.
    [62] Song X, Huang L, Sun L, et al. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface[J]. Applied Physics Letters, 2018, 112(7):73104.
    [63] Zhang T, Huang L, Li X, et al. High-efficiency broadband polarization converter based on Omega-shaped metasurface[J]. Journal of Physics D-Applied Physics, 2017, 50(45):454001.
    [64] Zhao R, Huang L, Tang C, et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(19):1800490.
    [65] Malek S C, Ee H, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6):3641-3645.
    [66] Ji R, Hua Y, Chen K, et al. A switchable metalens based on active tri-layer metasurface[J]. Plasmonics, 2019, 14(1):165-171.
    [67] Zhu W, Yang R, Fan Y, et al. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials[J]. Nanoscale, 2018, 10(25):12054-12061.
    [68] Cheng Z, Rios C, Pernice W H P, et al. On-chip photonic synapse[J]. Science Advances, 2017, 3(9):e1700160.
    [69] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1):60-75.
    [70] Hwang C, Kim G H, Yang J, et al. Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials[J]. Nanoscale, 2018, 10(46):21648-22655.
    [71] Li T, Huang L, Liu J, et al. Tunable wave plate based on active plasmonic metasurfaces[J]. Optics Express, 2017, 25(4):4216-4226.
    [72] Lin Z, Huang L, Zhao R, et al. Dynamic control of mode modulation and spatial multiplexing using hybrid metasurfaces[J]. Optics Express, 2019, 27(13):18740-18750.
    [73] Li J, Kamin S, Zheng G, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 2018, 4(6):eaar6768.
    [74] Li T, Wei Q, Reineke B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Optics Express, 2019, 27(15):21153-21162.
    [75] Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7:11930.
    [76] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography[J]. Nature Communications, 2016, 7:12533.
    [77] Lin Z, Huang L, Xu Z T, et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces[J]. Advanced Optical Materials, 2019:1900782.
    [78] Reineke B, Sain B, Zhao R, et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography[J]. Nano Letters, 2019, 19(9):6585-6591.
  • [1] 沈凡琪, 陈煜钦, 杨琳, 佘俊, 陈凯, 黄建明, 吴仍茂.  非垂轴观测平面上自由曲面光束强度与波前调控(特邀) . 红外与激光工程, 2023, 52(7): 20230323-1-20230323-9. doi: 10.3788/IRLA20230323
    [2] 吴海俊, 于丙石, 姜嘉琪, 赵波, CarmeloRosales-Guzmán, 白振旭, 朱智涵, 史保森.  光场空间结构全维度非线性调控理论及应用 . 红外与激光工程, 2023, 52(8): 20230397-1-20230397-5. doi: 10.3788/IRLA20230397
    [3] 刘佳琪, 程用志, 陈浮, 罗辉, 李享成.  基于几何相位超表面的高效独立双频点圆偏振太赫兹波束调控 . 红外与激光工程, 2023, 52(2): 20220377-1-20220377-11. doi: 10.3788/IRLA20220377
    [4] 张鑫宇, 吴海俊, CarmeloRosales-Guzmán, 白振旭, 朱智涵, 胡小鹏, 祝世宁.  非线性光场调控实现12倍相位超分辨实时干涉测量 . 红外与激光工程, 2023, 52(8): 20230398-1-20230398-5. doi: 10.3788/IRLA20230398
    [5] 潘永刚, 张四宝, 刘政, 刘文成, 李绵, 张春娟, 罗长新.  偏振和位相调控分光膜的设计与制备 . 红外与激光工程, 2022, 51(5): 20210512-1-20210512-7. doi: 10.3788/IRLA20210512
    [6] 杨伟荣, 潘永强, 郑志奇.  光学表面粒子污染物散射的单层薄膜调控特性 . 红外与激光工程, 2021, 50(12): 20210234-1-20210234-7. doi: 10.3788/IRLA20210234
    [7] 李泉, 刘姗姗, 路光达, 王爽.  利用石墨烯-金属复合结构实现太赫兹电磁诱导透明超表面主动调控 . 红外与激光工程, 2021, 50(8): 20210246-1-20210246-6. doi: 10.3788/IRLA20210246
    [8] 刘淇, 刘文玮, 程化, 陈树琪.  基于电介质超表面的双频带双偏振通道波前调控 . 红外与激光工程, 2021, 50(5): 20211027-1-20211027-5. doi: 10.3788/IRLA20211027
    [9] 王飞跃, 邹婷婷, 辛巍, 杨建军.  利用飞秒激光照射调控氧化石墨烯表面的浸润性能(特邀) . 红外与激光工程, 2020, 49(12): 20201064-1-20201064-6. doi: 10.3788/IRLA20201064
    [10] 贺敬文, 董涛, 张岩.  太赫兹波前调制超表面器件研究进展 . 红外与激光工程, 2020, 49(9): 20201033-1-20201033-11. doi: 10.3788/IRLA20201033
    [11] 石鸣谦, 刘俊, 陈卓, 王漱明, 王振林, 祝世宁.  基于超构表面的非线性光学与量子光学 . 红外与激光工程, 2020, 49(9): 20201028-1-20201028-22. doi: 10.3788/IRLA20201028
    [12] 赵云, 杨原牧.  非线性超构表面:谐波产生与超快调控 . 红外与激光工程, 2020, 49(9): 20201037-1-20201037-14. doi: 10.3788/IRLA20201037
    [13] 张雅鑫, 蒲明博, 郭迎辉, 靳金金, 李雄, 马晓亮, 罗先刚.  基于二次相位超表面的大视场紧凑型全Stokes偏振测量方法 . 红外与激光工程, 2020, 49(9): 20201030-1-20201030-8. doi: 10.3788/IRLA20201030
    [14] 韩娜, 黄玲玲, 林泽萌, 王涌天.  基于Ω型共形超颖表面的曲面全息 . 红外与激光工程, 2019, 48(7): 702002-0702002(6). doi: 10.3788/IRLA201948.0702002
    [15] 王倩, 宇磊磊, 刘昌吉, 靳延平, 董骁翔, 徐新龙.  绿带翠凤蝶中微纳结构的光学特性及其传感应用 . 红外与激光工程, 2019, 48(2): 203006-0203006(7). doi: 10.3788/IRLA201948.0203006
    [16] 贺文俊, 贾文涛, 李亚红, 王祺, 付跃刚.  基于S波片和双延迟器的矢量光场偏振调控方法 . 红外与激光工程, 2018, 47(12): 1207001-1207001(8). doi: 10.3788/IRLA201847.1207001
    [17] 李晨毓, 杨舟, 周庆莉, 武阿妮, 张存林.  结构对太赫兹超材料光调控特性的影响 . 红外与激光工程, 2016, 45(7): 703002-0703002(5). doi: 10.3788/IRLA201645.0703002
    [18] 黄玲玲.  基于手性光场作用的超颖表面的相位调控特性及其应用 . 红外与激光工程, 2016, 45(6): 634001-0634001(8). doi: 10.3788/IRLA201645.0634001
    [19] 佟庆, 荣幸, 张新宇, 桑红石, 谢长生.  用于测量和调控入射光偏振态的大面积阵列液晶器件 . 红外与激光工程, 2014, 43(2): 474-478.
    [20] 杨秀峰, 董凤娟, 童峥嵘, 曹晔.  利用非线性偏振旋转效应的可调谐多波长光纤激光器 . 红外与激光工程, 2012, 41(1): 53-57.
  • 加载中
计量
  • 文章访问数:  1189
  • HTML全文浏览量:  205
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-11
  • 修回日期:  2019-09-21
  • 刊出日期:  2019-10-25

新型功能超颖表面波前调制技术的发展与应用(特邀)

doi: 10.3788/IRLA201948.1002001
    作者简介:

    黄玲玲(1986-),女,教授,博士生导师,博士,主要从事微纳光学、计算全息、表面等离激元及深度学习等方面的研究。Email:huanglingling@bit.edu.cn;魏群烁(1993-),男,博士,主要从事超颖表面与全息技术方面的研究。Email:weiqunshuo@bit.edu.cn

    黄玲玲(1986-),女,教授,博士生导师,博士,主要从事微纳光学、计算全息、表面等离激元及深度学习等方面的研究。Email:huanglingling@bit.edu.cn;魏群烁(1993-),男,博士,主要从事超颖表面与全息技术方面的研究。Email:weiqunshuo@bit.edu.cn

    通讯作者: 王涌天(1957-),男,教授,博士生导师,博士,主要从事技术光学和虚拟现实等方面的研究。Email:wyt@bit.edu.cn
基金项目:

北京市卓越青年科学家项目(BJJWZYJH01201910007022);国家自然科学基金面上项目(61775019);北京市科技新星(Z171100001117047);北京市面上项目(4172057);教育部霍英东高校教师基金(161009)

  • 中图分类号: TN202

摘要: 超颖表面作为一类智能表面,通常由特殊设计、加工而得到的特征尺寸接近或小于波长的亚波长纳米天线阵列构成。超颖表面能够实现光场的振幅、相位和偏振的人为调控,具有超薄、超小像素、宽带、低损耗、易加工等优势,设计灵活,功能强大。文中针对超颖表面在全息显示、波前调制和偏振转换、主动可调、非线性波前调控等方向进行综述,并展望未来发展趋势。超颖表面作为一种超薄的、微型化的波前调制器件,具有极大的信息容量,且更能适应未来高度集成的微型光电系统的发展要求,在全息显示、光束整形、涡旋光束的产生、数据存储、加密与防伪、超透镜与色散控制、彩色印刷、非对称传输、非线性光学、光的自旋霍尔效应、光通信与集成光电子学等应用领域提供了潜在的可行性和新的视角,有望取代传统光电器件,展现出了广阔的发展前景。

English Abstract

参考文献 (78)

目录

    /

    返回文章
    返回