留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CPU-GPU异构系统在光学遥感影像处理中的应用

党源源 王昕

党源源, 王昕. CPU-GPU异构系统在光学遥感影像处理中的应用[J]. 红外与激光工程, 2020, 49(S1): 20200092. doi: 10.3788/IRLA20200092
引用本文: 党源源, 王昕. CPU-GPU异构系统在光学遥感影像处理中的应用[J]. 红外与激光工程, 2020, 49(S1): 20200092. doi: 10.3788/IRLA20200092
Dang Yuanyuan, Wang Xin. Application of CPU-GPU heterogeneous system in optical remote sensing image processing[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200092. doi: 10.3788/IRLA20200092
Citation: Dang Yuanyuan, Wang Xin. Application of CPU-GPU heterogeneous system in optical remote sensing image processing[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200092. doi: 10.3788/IRLA20200092

CPU-GPU异构系统在光学遥感影像处理中的应用

doi: 10.3788/IRLA20200092
基金项目: 

吉林省科技发展计划项目(20190302071GX);吉林省科技发展计划基金(201215127);吉林省教育厅科技规划项目(JYT2014-24)

详细信息
    作者简介:

    党源源(1980-),女,副教授,硕士,主要从事人工智能、图像处理方面的研究。Email:39352307@qq.com

  • 中图分类号: TP751

Application of CPU-GPU heterogeneous system in optical remote sensing image processing

  • 摘要: 近年来,CPU-GPU异构系统在光学遥感影像数据处理领域的应用得到了广泛关注。首先介绍CPU-GPU异构系统的体系架构及发展历程。其次,介绍光学遥感影像数据处理流程。接下来,对CPU-GPU异构系统在光学遥感影像预处理、后续处理领域应用现状进行介绍。最后对CPU-GPU异构系统在光学遥感影像数据处理系统中的应用进行分析和总结,分析可知,CPU-GPU异构系统在光学遥感影像数据处理领域应用具有可行性且前景广阔,但仍需解决算法并行化设计、优化及CPU和GPU负载平衡等关键问题,这对推动CPU-GPU异构系统在光学遥感影像数据处理中的应用具有重要意义。
  • [1] Gong Dun. Review on mapping space remote sensor optical system[J]. Chinese Optics, 2015, 8(5):714-724. (in Chinese)巩盾.空间遥感测绘光学系统研究综述[J]. 中国光学, 2015, 8(5):714-724.
    [2] Li Deren, Tong Qingxi, Li Rongxing. Current issues in high-resolution Earth observation technology[J]. Sci China Earth Sci, 2012, 42(6):805-813. (in Chinese)李德仁, 童庆禧, 李荣兴. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学:地球科学, 2012, 42(6):805-813.
    [3] Li Deren, Wang Mi, Shen Xin, et al. From earth observation satellite to earth observation brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):143-149. (in Chinese)李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报(信息科学版), 2017, 42(2):143-149.
    [4] Stone J, Phillips J, Hardy D. Accelerating molecular modeling applications with graphics processors[J]. Journal of Computational Chemistry, 2007, 28(16):2618-2640.
    [5] Lin Yisong, Yang Xuejun, Tang Tao. An integrated energy optimization approach for CPU-GPU heterogeneous systems based on critical path analysis[J]. Chinese Journal of Computers, 2012, 35(1):123-133. (in Chinese)林一松, 杨学军, 唐滔. 一种基于关键路径分析的CPU-GPU异构系统综合能耗优化方法[J]. 计算机学报, 2012, 35(1):123-133.
    [6] Yang Jingyu. Study on parallel processing technologies of photogrammetry data based on GPU[D]. Zhengzhou:PLA Information Engineering University, 2011. (in Chinese)杨靖宇. 摄影测量数据GPU并行处理若干关键技术研究[D]. 郑州:解放军信息工程大学, 2011.
    [7] Bai Hongtao. Research on high performance parallel algorithms based on GPU[D]. Changchun:Jilin University, 2010. (in Chinese)白洪涛. 基于GPU的高性能并行算法研究[D]. 长春:吉林大学, 2010.
    [8] Chen Dongdong. Research on performance optimization of CPU-GPU heterogeneous platform and its application in real-time signal simulation technologies[D]. Hangzhou:Zhejiang University, 2017. (in Chinese)陈冬冬. CPU-GPU异构平台的性能优化研究及其在实时信号模拟技术中的应用[D]. 杭州:浙江大学, 2017.
    [9] Zhang Fan, Han Shukui, Zhang Liguo. Parallel acceleration of Canny algorithm based on GPU[J]. Chinese Optics, 2017, 10(6):737-743. (in Chinese)张帆, 韩树奎, 张立国. Canny算法的GPU并行加速[J]. 中国光学, 2017, 10(6):737-743.
    [10] Luebke D. Cuda:Scalable parallel programming for high-performance scientific computing[C]//5th IEEE International Symposium on Digital Object Identifier. IEEE, 2008:836-838.
    [11] Harish P, Narayanan P J. Accelerating large graph algorithm on the GPU using CUDA[C]//International Conference on High-Performance Computing. Berlin Heidelberg:Springer, 2007:197-208.
    [12] Du P, Weber R, Luszczek P, et al. From CUDA to Open CL:Towards a performance-portable solution for multi-platform GPU programming[J]. Parallel Computing, 2012, 38(8):391-407.
    [13] Xu Xuegui, Zhang Qing. Efficiency processing parallel re mote sensing imagery using CUDA[J]. Geospatial Information, 2011, 9(6):47-53. (in Chinese)许雪贵, 张清. 基于CUDA的高效并行遥感影像处理[J]. 地理空间信息, 2011, 9(6):47-53.
    [14] Fang Liuyang. Research on CPU/GPU cooperative high performance processing for optical satellite remote sensing data[D]. Wuhan:Wuhan University, 2015. (in Chinese)方留杨. CPU/GPU协同的光学卫星遥感数据高性能处理方法研究[D]. 武汉:武汉大学, 2015.
    [15] Fang Liuyang, Wang Mi, Li Deren. A workload-distribution based CPU/GPU MTF compensation approach for high resolution satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):598-606. (in Chinese)方留杨, 王密, 李德仁. 负载分配的CPU/GPU高分辨率卫星影像调制传递补偿方法[J]. 测绘学报, 2014, 43(6):598-606.
    [16] Fang Liuyang, Wang Mi, Li Deren. A CPU-GPU coprocessing orthographic rectification approach for optical satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(10):668-675. (in Chinese)方留杨, 王密, 李德仁. CPU和GPU协同处理的光学卫星遥感影像正射校正方法[J].测绘学报, 2013, 42(10):668-675.
    [17] Dinguirard M, Slater P N. Calibration of space-multispectral imaging sensors:a review.[J]. Remote Sensing of Environment, 1999, 68(3):194-205.
    [18] Wang J N, Gu X F, Ming T, et al. Classification and gradation rule for remote sensing satellite data products.[J]. Journal of Remote Sensing, 2013, 17(3):566-577.
    [19] Duan Yini, Zhang Lifu, Yan Lei. Relative radiometric correction methods for remote sensing images and their applicability analysis[J]. Journal of Remote Sensing, 2014, 18(3):607-617. (in Chinese)段依妮, 张立福, 晏磊. 遥感影像相对辐射校正方法及适用性研究[J]. 遥感学报, 2014, 18(3):607-617.
    [20] Xu L, Zheng S, Jia J Y. Unnatural l0 sparse representation for natural image deblurring[C]//Computer Vision and Pattern Recognition, 2013 IEEE Conference on, 2013:1107-1114.
    [21] Wang Guodong, Xu Jie, Pan Zhenkuan. Blind image restoration based on normalized hyper laplacian prior term[J]. Opt Precision Eng, 2013, 21(5):1340-1348. (in Chinese)王国栋, 徐洁, 潘振宽. 基于归一化超拉普拉斯先验项的运动模糊图像盲复原[J]. 光学精密工程, 2013, 21(5):1340-1348.
    [22] Yan Jingwen, Peng Hong, Liu Lei. Remote sensing image restoration based on zero-norm regularized kernel estimation[J]. Opt Precision Eng, 2014, 22(9):2572-2579. (in Chinese)闫敬文, 彭鸿, 刘蕾. 基于L0正则化模糊核估计的遥感图像复原[J].光学精密工程, 2014, 22(9):2572-2579.
    [23] Lou Shuai, Ding Zhenliang, Yuan Feng. Iterative image restoration algorithm based on contourlet transform[J]. Acta Optica Sinica, 2009, 29(10):2768-2773. (in Chinese)娄帅, 丁振良, 袁峰. 基于Contourlet变换的迭代图像复原算法[J]. 光学学报, 2009, 29(10):2768-2773.
    [24] Wang Xuelin, Zhao Shubin, Peng Silong. Image restoration based on wavelet-domain hidden Markov tree model[J]. Chinase J Computers, 2005, 28(6):1006-1012. (in Chinese)汪雪林, 赵书斌, 彭思龙. 基于小波域隐马尔可夫树模型的图像复原[J]. 计算机学报, 2005, 28(6):1006-1012.
    [25] Zhang Peng, Liu Tuanjie, Wang Hongqi. MTF estimation based on system model for linear CCD camera and image recovery[J]. Optical Technique, 2009, 35(3):394-398. (in Chinese)张朋, 刘团结, 王宏琦. 线阵CCD相机MTF的系统模型估计法与图像复原[J]. 光学技术, 2009, 35(3):394-398.
    [26] Li Tiecheng, Tao Xiaoping, Feng Huajun. MTF calculation and image restoration based on slanted-edge method[J]. Acta Optica Sinica, 2010, 30(10):2891-2897. (in Chinese)李铁成, 陶小平, 冯华君. 基于倾斜刃边法的调试传递函数计算机图像复原[J]. 光学学报, 2010, 30(10):2891-2897.
    [27] Gu Hangfa, Li Xiaojun, Min Xiangjun. On-orbit MTF estimation and MTF compensation of CCD camera in CBERS-02 satellite[J]. Science in China Series E Information Sciences, 2005, 35(1):26-40. (in Chinese)顾行发, 李小军, 闵祥军. CBERS-02卫星CCD相机MTF在轨测量及图像MTF补偿[J]. 中国科学:信息科学, 2005, 35(1):26-40.
    [28] Chen Chao, Chen Bin, Meng Jianping. Geometric correction of remote sensing images based on graphic processing unit[J]. Command Information System and Technology, 2012, 3(1):76-80. (in Chinese)陈超, 陈彬, 孟剑萍. 基于GPU大规模遥感图像的几何校正[J]. 指挥信息系统与技术, 2012, 3(1):76-80.
    [29] Yang Jingyu, Zhang Yongsheng, Li Zhengguo. GPU-CPU cooperate processing of RS image ortho-rectification[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9):1043-1046. (in Chinese)杨靖宇, 张永生, 李正国. 遥感影像正射纠正的GPU-CPU协同处理研究[J]. 武汉大学学报(信息科学版), 2011, 36(9):1043-1046.
    [30] Wang Chunyuan. Research on geometric correction and object recognition for remote sensing image[D]. Harbin:Harbin Institute of Technology, 2014. (in Chinese)王春媛. 遥感图像几何校正及目标识别技术研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
    [31] Chunyan L, Huanxin Z, Hao S, et al. Combing rough set and RBF neural network for large-scale ship recognition in optical satellite images[J]. Bulletin of Sport Science & Technology, 2014, 17(1):682-691.
    [32] Zhang Risheng, Zhang Yanqin. Study on high-resolution remote sensing image recognition and classification based on deep learning[J]. Information & Communications, 2017(1):110-111. (in Chinese)张日升, 张燕琴. 基于深度学习的高分辨率遥感图像识别与分类研究[J]. 信息通信, 2017(1):110-111.
    [33] Long Siyuan, Zhang Bao, Song Ce. Object detection based on improved speeded-up robust features[J]. Chinese Optics, 2017, 10(6):719-725. (in Chinese)龙思源, 张葆, 宋策. 基于改进的加速鲁棒特征的目标识别[J]. 中国光学, 2017, 10(6):719-725.
    [34] Thmoas U, Kurz F, Rosenbaum, et al. CPU-based orthorectification of digital airborne camera images in real time[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, XXXVⅡ(B1):589-594.
    [35] Hou Yi, Shen Yannan, Wang Ruisuo. The discussion of GPU-based digital differential rectification[J]. Modern Surveying and Mapping, 2009, 32(3):10-11. (in Chinese)侯毅, 沈彦男, 王睿索. 基于GPU的数字影像的正射纠正技术的研究[J]. 现代测绘, 2009, 32(3):10-11.
    [36] Wu Di, Wang Hongqiang, Zou Tongyuan. Design and implementation of GPU-based analog image geometric correction algorithm[J]. Information and Computer (Theoretical Edition), 2020, 32(3):38-40, 43. (in Chinese)吴敌, 汪红强, 邹同元. 基于GPU的遥感图像几何校正算法设计与实现[J]. 信息与电脑(理论版), 2020, 32(3):38-40, 43.
    [37] Ashutosh G S, Devakanth N T P, Srinivasan B G K. A GPU based image matching approach for DEM generation using stereo imagery[C]//2011 Nirma University International Conference on Engineering, 2011:1-5.
    [38] Zhou Haifang, Zhao Jin. Parallel programming design and storage optimization of remote sensing image registration based on GPU[J]. Journal of Computer Research and Development, 2012, 49(S):282-286. (in Chinese)周海芳, 赵进. 基于GPU的遥感图像配准并行程序设计与存储优化[J]. 计算机研究与发展, 2012, 49(S):282-286.
    [39] Wang M, Fang L Y, Li D, et al. Using multiple GPUs to accelerate MTF compensation and georectification of high-resolution optical satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 10(8):4952-4972.
    [40] Zhao Jin, Liu Changming, Song Feng. Study of remote sensing image fusion parallel algorithms based on GPU[J]. Microcomputer & Its Application, 2013, 32(6):35-37. (in Chinese)赵进, 刘昌明, 宋峰. 基于GPU的遥感图像融合并行算法研究[J]. 微型机与应用, 2013, 32(6):35-37.
    [41] Zhou Jianan. Study on image fusion for remote sensing based on GPU[D]. Lanzhou:Lanzhou Jiaotong University, 2015. (in Chinese)周嘉男. 基于GPU的遥感影像融合方法研究[D]. 兰州:兰州交通大学, 2015.
    [42] Lu Jun, Zhang Baoming, Huang Wei. IHS transform algorithm of remote sensing image data fusion based on GPU[J]. Computer Engineering, 2009, 35(7):261-263. (in Chinese)卢俊, 张保明, 黄薇. 基于GPU的遥感影像数据融合IHS变换算法[J]. 计算机工程, 2009, 35(7):261-263.
    [43] Xu Rulin, Zhou Haifang, Jiang Jingfei. Design and implementation of a parallel algorithm of the HIS and Wavelet based image fusion for remote sensing based on GPU[J]. Computer Engineering & Science, 2012, 34(8):135-141. (in Chinese)徐如林, 周海芳, 姜晶菲. 基于GPU的遥感图像IHS小波融合并行算法设计与实现[J]. 计算机工程与科学, 2012, 34(8):135-141.
    [44] Zhang Fan. Target recognition and parallel acceleration with GPU in marine remote sensing image[D]. Beijing:University of Chinese Academy of Sciences, 2016. (in Chinese)张帆. 海上光学遥感图像目标识别与GPU并行加速[D].北京:中国科学院大学, 2016.
    [45] Zheng Jida. Hyper spectral image classification and target detection based on GPU[D]. Nanjing:Nanjing University of Science & Technology, 2016. (in Chinese)郑济达. 基于GPU的高光谱图像分类与目标检测[D]. 南京:南京理工大学, 2016.
    [46] Xu Ning, Xiao Xinyao, Hu Yuxin. Validation and analysis of high performance computer on hyperspectral imagery based on GPU[J]. Journal of Geomechanis, 2015, 21(2):190-198. (in Chinese)许宁, 肖新耀, 胡玉新. GPU用于高光谱数据高性能计算的应用实践与分析[J]. 地质力学学报, 2015, 21(2):190-198.
    [47] Tang Yuanyuan, Zhou Haifang, Fang Minquan. Hyperspectral remote sensing image data processing on GPU[J]. Information Security and Technology, 2015, 43(2):46-51. (in Chinese)汤媛媛, 周海芳, 方民权. 基于GPU的高光谱遥感影像数据处理[J]. 信息安全与技术, 2015, 43(2):46-51.
    [48] Fang Minquan. Parallel algorithm re-search and realization of linear dimensionality reduction for hyperspectral image on CPU/GPU[D]. Changsha:National University of Defense Technology, 2013. (in Chinese)方民权. CPU/GPU异构系统下高光谱遥感影像线性降维并行算法研究与实现[D]. 长沙:国防科技大学, 2013.
    [49] Song Yigang, Ye Shun, Wu Zebin. Parallel optimization of pixel purity index algorithm based on GPU for hyperspectral remote sensing image[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(4):74-80. (in Chinese)宋义刚, 叶舜, 吴泽彬. 基于GPU的高光谱遥感图像PPI并行优化[J]. 航天返回与遥感, 2014, 35(4):74-80.
    [50] Yu Chaoyin. Parallelization of end element extraction algorithm for hyperspectral images of discrete particle swarm optimization based on GPU[D]. Chongqing:Chongqing University of Posts and Telecommunications, 2018. (in Chinese)俞潮音. 基于GPU的离散粒子群高光谱图像端元提取算法并行化研究[D].重庆:重庆邮电大学, 2018.
    [51] Gan Jisheng. Parallel classification of hyperspectral image GPU based on generalized combinatorial core[D]. Nanjing:Nanjing University of Science and Technology, 2018. (in Chinese)甘继生. 基于广义组合核的高光谱图像GPU并行分类[D]. 南京:南京理工大学, 2018.
  • [1] 李国元, 唐新明, 周平, 陈继溢, 刘诏, 窦显辉, 周晓青, 王霞.  资源三号03星激光测高数据处理与复合测绘应用 . 红外与激光工程, 2022, 51(5): 20210356-1-20210356-9. doi: 10.3788/IRLA20210356
    [2] 安宁, 关博文, 张旖伦, 高健, 温冠宇, 董雪, 马磊, 范存波.  卫星激光测距数据处理方法研究进展 . 红外与激光工程, 2021, 50(8): 20200408-1-20200408-9. doi: 10.3788/IRLA20200408
    [3] 苗澍茁, 安宁, 高健, 温冠宇, 宋清丽, 董雪, 马磊, 范存波.  SLR系统地靶数值仿真及数据处理 . 红外与激光工程, 2021, 50(9): 20200402-1-20200402-9. doi: 10.3788/IRLA20200402
    [4] 朱笑笑, 王成, 习晓环, 聂胜, 杨学博, 黎东.  ICESat-2星载光子计数激光雷达数据处理与应用研究进展 . 红外与激光工程, 2020, 49(11): 20200259-1-20200259-10. doi: 10.3788/IRLA20200259
    [5] 王滨辉, 宋沙磊, 曹雄, 何东, 刘中正, 陈振威.  多光谱激光雷达波形数据处理及应用 . 红外与激光工程, 2020, 49(S2): 20200368-20200368. doi: 10.3788/IRLA20200368
    [6] 许艺腾, 李国元, 邱春霞, 薛玉彩.  基于地形相关和最小二乘曲线拟合的单光子激光数据处理技术 . 红外与激光工程, 2019, 48(12): 1205004-1205004(10). doi: 10.3788/IRLA201948.1205004
    [7] 赵亚龙, 刘守起, 张启灿.  GPU加速三维面形测量 . 红外与激光工程, 2018, 47(3): 317003-0317003(7). doi: 10.3788/IRLA201847.0317003
    [8] 徐超, 何利民, 王霞, 金伟其.  红外偏振成像系统高速处理模块设计 . 红外与激光工程, 2017, 46(2): 204002-0204002(8). doi: 10.3788/IRLA201746.0204002
    [9] 刘东, 刘群, 白剑, 张与鹏.  星载激光雷达CALIOP数据处理算法概述 . 红外与激光工程, 2017, 46(12): 1202001-1202001(12). doi: 10.3788/IRLA201746.1202001
    [10] 成桂梅, 刘涛, 荣鹏, 程甘霖, 段京.  多探测器数据控制与处理系统设计 . 红外与激光工程, 2016, 45(4): 420002-0420002(6). doi: 10.3788/IRLA201645.0420002
    [11] 张旭涛, 孙金海, 蔡禾, 张少华.  太赫兹时域光谱系统静区测试及数据处理 . 红外与激光工程, 2016, 45(11): 1125003-1125003(5). doi: 10.3788/IRLA201645.1125003
    [12] 陆智俊, 贲德, 毛博年.  资源限制型可重构并行信息处理方法 . 红外与激光工程, 2016, 45(11): 1126003-1126003(6). doi: 10.3788/IRLA201645.1126003
    [13] 封双连, 强希文, 宗飞, 李志朝, 常金勇, 赵军卫, 吴敏, 江钰.  湍流廓线激光雷达的数据处理方法 . 红外与激光工程, 2015, 44(S1): 220-224.
    [14] 杨崇瑞, 汪家升, 盛新志, 娄淑琴.  利用多数据处理方法提高LIBS谱信号质量 . 红外与激光工程, 2014, 43(11): 3807-3812.
    [15] 曹永刚, 王旻, 余毅, 王涛, 王弟男, 佟刚, 孙俊喜.  车载光测设备平台倾斜的测量与数据处理 . 红外与激光工程, 2014, 43(8): 2704-2708.
    [16] 孙斌, 张俊举, 常本康, 杨锋, 韩博.  基于并行信号处理的手持式夜视系统设计与实现 . 红外与激光工程, 2014, 43(4): 1338-1343.
    [17] 陈茜, 邱跃洪, 易红伟.  基于GPU的星图配准算法并行程序设计 . 红外与激光工程, 2014, 43(11): 3756-3761.
    [18] 张俊, 闫镔, 李磊, 闫培, 陆利忠, 张峰, 魏星.  采用高频能量的CT几何参数自标定方法 . 红外与激光工程, 2013, 42(9): 2540-2546.
    [19] 王茂芝, 郭科, 徐文皙.  基于集群和GPU的高光谱遥感影像并行处理 . 红外与激光工程, 2013, 42(11): 3070-3075.
    [20] 石坤, 郝颖明, 王明明, 付双飞.  海面背景红外实时仿真 . 红外与激光工程, 2012, 41(1): 25-29.
  • 加载中
计量
  • 文章访问数:  309
  • HTML全文浏览量:  85
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-06-21
  • 刊出日期:  2020-09-22

CPU-GPU异构系统在光学遥感影像处理中的应用

doi: 10.3788/IRLA20200092
    作者简介:

    党源源(1980-),女,副教授,硕士,主要从事人工智能、图像处理方面的研究。Email:39352307@qq.com

基金项目:

吉林省科技发展计划项目(20190302071GX);吉林省科技发展计划基金(201215127);吉林省教育厅科技规划项目(JYT2014-24)

  • 中图分类号: TP751

摘要: 近年来,CPU-GPU异构系统在光学遥感影像数据处理领域的应用得到了广泛关注。首先介绍CPU-GPU异构系统的体系架构及发展历程。其次,介绍光学遥感影像数据处理流程。接下来,对CPU-GPU异构系统在光学遥感影像预处理、后续处理领域应用现状进行介绍。最后对CPU-GPU异构系统在光学遥感影像数据处理系统中的应用进行分析和总结,分析可知,CPU-GPU异构系统在光学遥感影像数据处理领域应用具有可行性且前景广阔,但仍需解决算法并行化设计、优化及CPU和GPU负载平衡等关键问题,这对推动CPU-GPU异构系统在光学遥感影像数据处理中的应用具有重要意义。

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回