留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一发两收卫星激光测距系统中目标距离测量试验

李春晓 李祝莲 汤儒峰 李荣旺 李语强

李春晓, 李祝莲, 汤儒峰, 李荣旺, 李语强. 一发两收卫星激光测距系统中目标距离测量试验[J]. 红外与激光工程, 2020, 49(S1): 20200145. doi: 10.3788/IRLA20200145
引用本文: 李春晓, 李祝莲, 汤儒峰, 李荣旺, 李语强. 一发两收卫星激光测距系统中目标距离测量试验[J]. 红外与激光工程, 2020, 49(S1): 20200145. doi: 10.3788/IRLA20200145
Li Chunxiao, Li Zhulian, Tang Rufeng, Li Rongwang, Li Yuqiang. Target distance measurement experiment with a bi-static satellite laser ranging system[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200145. doi: 10.3788/IRLA20200145
Citation: Li Chunxiao, Li Zhulian, Tang Rufeng, Li Rongwang, Li Yuqiang. Target distance measurement experiment with a bi-static satellite laser ranging system[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200145. doi: 10.3788/IRLA20200145

一发两收卫星激光测距系统中目标距离测量试验

doi: 10.3788/IRLA20200145
基金项目: 

国家自然科学基金(U1731112,U1431116);云南省自然科学基金(2019FA002)

详细信息
    作者简介:

    李春晓(1989-),男,博士生,主要从事卫星激光测距方面的研究。Email:lcx@ynao.ac.cn

    通讯作者: 李语强(1978-),男,研究员,博士,主要从事卫星、月球、空间碎片激光方面的研究。Email:lyq@ynao.ac.cn
  • 中图分类号: TN247

Target distance measurement experiment with a bi-static satellite laser ranging system

  • 摘要: 一发两收激光测距技术可提高卫星激光测距系统的探测能力,因此,一发两收测距模式在空间碎片激光测距中得到了很好的应用。实测获得的合距离可用于解算目标位置等参数,然而解算过程中存在精密定轨法方程复杂的困难,而将合距离归算到目标到各站点的距离能够简化法方程。结合中国科学院云南天文台1.2 m望远镜10 Hz共光路激光测距接收系统和53 cm双筒望远镜千赫兹常规卫星激光测距系统,建立了一个一发两收高精度激光测距试验平台,并对过境的多圈卫星开展了激光测距试验,直接测量获得了目标的合距离以及目标至各站点的距离。试验结果表明:卫星到1.2 m望远镜的距离与到53 cm双筒望远镜的距离之差符合预期,距离测量精度达到厘米量级,获得的卫星测量数据可用于异地收发空间碎片激光测距系统的距离归算方法研究。
  • [1] Li Yuqiang, Li Zhulian, Fu Honglin, et al. Experimentation of diffuse reflection laser ranging of space debris[J]. Chinese Journal of Lasers, 2011, 38(9):1-5. (in Chinese)
    [2] Zhang Zhongping, Cheng Zhien, Zhang Haifeng, et al. Observation of space debris by ground-based laser ranging system and research on detecting ability[J]. Infrared and Laser Engineering, 2017, 46(3):0329001. (in Chinese)
    [3] Wu Zhibo, Zhang Haifeng, Li Pu, et al. Laser ranging technology with parallel muti-telescope reception of laser transmitting from one telescope[J]. Journal of Spacecraft TT&C Technology, 2014, 33(2):134-139. (in Chinese)
    [4] Zhang Haifeng, Long Mingliang, Deng Huarong, et al. Detection ability of laser ranging system based on multi-telescopes to receive echo signal[J]. Infrared and Laser Engineering, 2018, 47(9):0906002. (in Chinese)
    [5] Bamann C, Hugentobler U, Kirchner G, et al. Analysis of mono- and multi-static laser ranging scenarios for orbit improvement of space debris[C]//25th International Symposium on Space Flight Dynamics ISSFD, 2015.
    [6] Sosnica K. Determination of Precise Satellite Orbits and Geodetic Parameters using Satellite Laser Ranging[M]. Switzerland:University of Bern, 2014.
    [7] Kirchner G, Koidl F, Kucharski D, et al. Space debris laser ranging at graz[C]//6th European Conference on Space Debris, 2013.
    [8] Kirchner G, Koidl F, Ploner M, et al. Multistatic laser ranging to space debris[C]//18th International Workshop on Laser Ranging, 2013.
    [9] Zhang Zhongping, Zhang Haifeng, Deng Huarong, et al. Experiment of laser ranging to space debris by using two receiving telescopes[J]. Infrared and Laser Engineering, 2016, 45(1):0102002. (in Chinese)
    [10] Long Mingliang, Zhang Haifeng, Deng Huarong, et al. Laser ranging for space debris using double telescopes with kilometer-level distance[J]. Acta Optica Sinica, 2020, 40(2):0228002. (in Chinese)
    [11] Xue L, Zhang L, Zhang S, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength[J]. Optics Letters, 2016, 41(16):3848-3851.
    [12] Tang R, Li Z, Li Y, et al. Light curve measurements with a superconducting nanowire single-photon detector[J]. Optics Letters, 2018, 43(21):5488.
    [13] Li Yuqiang, Li Rongwang, Li Zhulian, et al. Determination of the distance to a non-coorperative target in laser ranging with separate optical paths[J]. Astronomical Research & Technology, 2012, 9(2):137-142. (in Chinese)
    [14] Li Zhulian, Li Yuqiang, Fu Honglin, et al. Design and realization of a 10 Hz diffuse-reflection laser ranging control system[J]. Astronomical Research and Technology, 2012, 9(3):302-307. (in Chinese)
    [15] Zheng Xiangming, Li Zhulian, Fu Honglin, et al. 1.2 m telescope satellite co-optical path kHz laser ranging system[J]. Acta Optica Sinica, 2011, 31(5):1-5. (in Chinese)
    [16] Li Zhulian, Zhang Haitao, Li Yuqiang, et al. 53 cm binocular telescope high repetition frequency space debris laser ranging system[J]. Infrared and Laser Engineering, 2017, 46(7):0729001. (in Chinese)
    [17] Zhai Dongsheng, Li Yuqiang, Xu Rong, et al. Design and realization of single telescope transmitting and twin receiving laser ranging system at Yunnan Observatories[J]. Astronomical Research and Technology, 2017, 14(3):310-316. (in Chinese)
    [18] Ye Shuhua, Huang Cheng. Astrogeodynamics[M]. Jinan:Shandong Science and Technology Press, 2000. (in Chinese)
    [19] Degnan J. Millimeter Accuracy Satellite Laser Ranging:A Review[M]//Contributions of Space Geodesy to Geodynamics:Technology, Volume 25. USA:American Geophysical Union, 1993.
  • [1] 吴凡, 翟东升, 李祝莲, 汤儒峰, 皮晓宇, 李语强.  激光测距中激光功率实时监测系统设计与实现 . 红外与激光工程, 2023, 52(10): 20230109-1-20230109-7. doi: 10.3788/IRLA20230109
    [2] 雷韫璠, 王龙, 钟红军, 张辉, 武延鹏.  基于轨迹一致性检测的空间碎片天基识别方法 . 红外与激光工程, 2022, 51(11): 20220076-1-20220076-10. doi: 10.3788/IRLA20220076
    [3] 魏靖松, 程勇, 朱孟真, 陈霞, 刘旭, 谭朝勇, 米朝伟.  自由振荡激光天基清扫空间碎片机理研究 . 红外与激光工程, 2021, 50(S2): 20200198-1-20200198-6. doi: 10.3788/IRLA20200198
    [4] 李响, 白东伟, 孟立新, 高亮, 安岩.  空间碎片探测与测距复合系统光学望远镜 . 红外与激光工程, 2021, 50(7): 20200464-1-20200464-10. doi: 10.3788/IRLA20200464
    [5] 李祝莲, 翟东升, 张海涛, 皮晓宇, 伏红林, 李荣旺, 李鹏飞, 张蜡宝, 李语强.  基于超导探测器的白天卫星激光测距试验与研究 . 红外与激光工程, 2020, 49(8): 20190536-1-20190536-6. doi: 10.3788/IRLA20190536
    [6] 林正国, 金星, 常浩.  脉冲激光大光斑辐照空间碎片冲量耦合特性研究 . 红外与激光工程, 2018, 47(12): 1243001-1243001(6). doi: 10.3788/IRLA201847.1243001
    [7] 侯重远, 李恒年, 杨元, 路毅.  地面强激光操控空间碎片避碰的控制策略 . 红外与激光工程, 2017, 46(3): 329003-0329003(6). doi: 10.3788/IRLA201746.0329003
    [8] 康博琨, 金星, 常浩.  空间碎片天基激光辐照下的轨道特性仿真分析 . 红外与激光工程, 2017, 46(3): 329005-0329005(10). doi: 10.3788/IRLA201746.0329005
    [9] 温泉, 杨丽薇, 赵尚弘, 方英武, 王轶, 丁西峰, 林涛.  天基激光清除小尺度空间碎片变轨模型研究 . 红外与激光工程, 2017, 46(3): 329004-0329004(8). doi: 10.3788/IRLA201746.0329004
    [10] 张忠萍, 程志恩, 张海峰, 邓华荣, 江海.  地基激光测距系统观测空间碎片及其探测能力研究 . 红外与激光工程, 2017, 46(3): 329001-0329001(7). doi: 10.3788/IRLA201746.0329001
    [11] 李祝莲, 张海涛, 李语强, 伏红林, 翟东升.  53 cm双筒望远镜高重频空间碎片激光测距系统 . 红外与激光工程, 2017, 46(7): 729001-0729001(5). doi: 10.3788/IRLA201746.0729001
    [12] 杜建丽, 李彬, 陈立娟, 雷祥旭, 吴满意, 桑吉章.  空间碎片精密测角和测距仿真数据定轨性能分析 . 红外与激光工程, 2016, 45(2): 229004-0229004(8). doi: 10.3788/IRLA201645.0229004
    [13] 康博琨, 金星, 常浩.  天基激光探测厘米级空间碎片建模仿真研究 . 红外与激光工程, 2016, 45(S2): 41-47. doi: 10.3788/IRLA201645.S229003
    [14] 洪延姬, 金星, 常浩.  天基平台激光清除厘米级空间碎片关键问题探讨 . 红外与激光工程, 2016, 45(2): 229001-0229001(6). doi: 10.3788/IRLA201645.0229001
    [15] 翟光, 赵琪, 张景瑞.  空间碎片在轨识别与精确定位方法 . 红外与激光工程, 2016, 45(S1): 169-176. doi: 10.3788/IRLA201645.S129001
    [16] 姜会林, 付强, 张雅琳, 江伦.  空间碎片激光探测成像通信一体化技术探讨 . 红外与激光工程, 2016, 45(4): 401001-0401001(7). doi: 10.3788/IRLA201645.0401001
    [17] 朱殷, 陈浩, 徐融, 赵飞.  优化的一维激光清理空间碎片流体力学模型 . 红外与激光工程, 2016, 45(S1): 177-182. doi: 10.3788/IRLA201645.S129002
    [18] 张忠萍, 张海峰, 邓华荣, 程志恩, 李朴, 曹建军, 慎露润.  双望远镜的空间碎片激光测距试验研究 . 红外与激光工程, 2016, 45(1): 102002-0102002(7). doi: 10.3788/IRLA201645.0102002
    [19] 李语强, 李荣旺, 李祝莲, 翟东升, 伏红林, 熊耀恒.  空间碎片激光测距应用研究 . 红外与激光工程, 2015, 44(11): 3324-3329.
    [20] 许俊峰, 姜春兰, 毛亮, 王在成, 李明.  测距成像一体化引信与可瞄准战斗部配合技术 . 红外与激光工程, 2014, 43(6): 1794-1800.
  • 加载中
计量
  • 文章访问数:  277
  • HTML全文浏览量:  63
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-02
  • 修回日期:  2020-05-08
  • 刊出日期:  2020-09-22

一发两收卫星激光测距系统中目标距离测量试验

doi: 10.3788/IRLA20200145
    作者简介:

    李春晓(1989-),男,博士生,主要从事卫星激光测距方面的研究。Email:lcx@ynao.ac.cn

    通讯作者: 李语强(1978-),男,研究员,博士,主要从事卫星、月球、空间碎片激光方面的研究。Email:lyq@ynao.ac.cn
基金项目:

国家自然科学基金(U1731112,U1431116);云南省自然科学基金(2019FA002)

  • 中图分类号: TN247

摘要: 一发两收激光测距技术可提高卫星激光测距系统的探测能力,因此,一发两收测距模式在空间碎片激光测距中得到了很好的应用。实测获得的合距离可用于解算目标位置等参数,然而解算过程中存在精密定轨法方程复杂的困难,而将合距离归算到目标到各站点的距离能够简化法方程。结合中国科学院云南天文台1.2 m望远镜10 Hz共光路激光测距接收系统和53 cm双筒望远镜千赫兹常规卫星激光测距系统,建立了一个一发两收高精度激光测距试验平台,并对过境的多圈卫星开展了激光测距试验,直接测量获得了目标的合距离以及目标至各站点的距离。试验结果表明:卫星到1.2 m望远镜的距离与到53 cm双筒望远镜的距离之差符合预期,距离测量精度达到厘米量级,获得的卫星测量数据可用于异地收发空间碎片激光测距系统的距离归算方法研究。

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回