留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Graphene quantum dots/ZnO nanowires composites for efficient ultraviolet sensing

Fan Yu Yuan Qianqian Jiang Haitao Liu Shibin

樊宇, 元倩倩, 蒋海涛, 刘诗斌. 石墨烯量子点/氧化锌纳米线复合提高紫外光传感性能[J]. 红外与激光工程, 2021, 50(4): 20200447. doi: 10.3788/IRLA20200447
引用本文: 樊宇, 元倩倩, 蒋海涛, 刘诗斌. 石墨烯量子点/氧化锌纳米线复合提高紫外光传感性能[J]. 红外与激光工程, 2021, 50(4): 20200447. doi: 10.3788/IRLA20200447
Fan Yu, Yuan Qianqian, Jiang Haitao, Liu Shibin. Graphene quantum dots/ZnO nanowires composites for efficient ultraviolet sensing[J]. Infrared and Laser Engineering, 2021, 50(4): 20200447. doi: 10.3788/IRLA20200447
Citation: Fan Yu, Yuan Qianqian, Jiang Haitao, Liu Shibin. Graphene quantum dots/ZnO nanowires composites for efficient ultraviolet sensing[J]. Infrared and Laser Engineering, 2021, 50(4): 20200447. doi: 10.3788/IRLA20200447

石墨烯量子点/氧化锌纳米线复合提高紫外光传感性能

doi: 10.3788/IRLA20200447
详细信息
  • 中图分类号: TL814

Graphene quantum dots/ZnO nanowires composites for efficient ultraviolet sensing

More Information
    Author Bio:

    樊宇(1975−),女,副教授,硕士,主要从事智能控制方面的研究。

  • 摘要: 传统的氧化锌紫外探测器存在光电流小的问题,由于石墨烯具有较高的载流子迁移率,文中采用一种简便的旋涂退火的方法,使得石墨烯量子点在氧化锌纳米线表面复合。利用石墨烯量子点修饰氧化锌纳米线的表面后,制备的氧化锌基紫外光电探测器在5 V偏置电压条件下,在波长为365 nm、功率为1.35 mW/cm2的紫外光照射下,光电流从9.5 μA增加到65 μA,光电流增大了6.8倍,光电流明显提高。这种简单的旋涂退火方法,在有效降低紫外光电探测器加工工艺的同时,提高了探测器的性能,将为下一代可持续绿色发展策略,设计高效率低成本的光电设备提供有益的参考。
  • Figure  1.  Fabrication process of ZnO-GQDs device

    Figure  2.  (a) Top-view SEM images of the as-grown ZnO NWs; (b) High resolution of ZnO NWs; (c) Top-view SEM images of the GQDs-ZnO NWs; (d) High resolution of GQDs-ZnO NWs

    Figure  3.  TEM of ZnO NWs and ZnO-GQDs NWs: (a) the single ZnO NW sample for TEM; (b) the observation regions of ZnO NW in red circle; (c) the single ZnO-GQDs NW sample for TEM; (d) the observation regions of ZnO-GQDs NW in red circle

    Figure  4.  GQDs’s diameter characterization. (a) the TEM of GQD; (b) the figure of diameter distribution statistics

    Figure  5.  I-V characteristics of the ZnO NWs photodetectors (a) and ZnO-GQDs NWs photodetectors (b); I-T characteristics of the ZnO NWs photodetectors (c) and ZnO-GQDs NWs photodetectors (d)

    Figure  6.  Photoresponse mechanism of the ZnO-NWs (a)–(b) and ZnO-G QDs (c). The oxygen plasma treatment improves the oxygen CB and VB are the conduction and valence bands, respectively

  • [1] Nasiri N, Bo R, Hung T F, et al. Tunable band-selective UV-photodetectors by 3D self-assembly of heterogeneous nanoparticle networks [J]. Advanced Functional Materials, 2016, 26(40): 7359-7366. doi:  10.1002/adfm.201602195
    [2] Chen H, Liu K, Hu L, et al. New concept ultraviolet photodetectors [J]. Materials Today, 2015, 18(9): 493-502.
    [3] Jiang Haitao, Liu Shibin, He Peipei, et al. The laterial growth of ZnO nanowires network based on the micro-electrode [J]. Rare Metal Materials and Engineering, 2017, 46(11): 3213-3216.
    [4] Peng L, Hu L, Fang X. Low-dimensional nanostructure ultravio-let photodetectors [J]. Advanced Materials, 2013, 25(37): 5321-5328. doi:  10.1002/adma.201301802
    [5] Jiang H, Liu S, Yuan Q. Synergistic effect of hybrid nanodia-mond/ZnO nanowires for improved ultraviolet photore-sponse [J]. Infrared and Laser Engineering, 2019, 48(1): 0120004. doi:  10.3788/IRLA201948.0120004
    [6] Li X, Gao C, Duan H, et al. High‐performance photoelectro-chemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure [J]. Small, 2013, 9(11): 2005-2011. doi:  10.1002/smll.201202408
    [7] Xie Y, Wei L, Wei G, et al. A self-powered UV photodetector based on TiO2 nanorod arrays [J]. Nanoscale Research Letters, 2013, 8(1): 188. doi:  10.1186/1556-276X-8-188
    [8] Fang X, Hu L, Huo K, et al. New ultraviolet photodetector based on individual Nb2O5 nanobelts [J]. Advanced Functional Ma-terials, 2011, 21(20): 3907-3915. doi:  10.1002/adfm.201100743
    [9] Liu H, Zhang Z, Hu L, et al. New UV‐a photodetector based on individual potassium niobate nanowires with high perfor-mance [J]. Advanced Optical Materials, 2014, 2(8): 771-778. doi:  10.1002/adom.201400176
    [10] Djurišić A B, Ng A M C, Chen X Y. ZnO nanostructures for optoelectronics: material properties and device applications [J]. Progress in Quantum Electronics, 2010, 34(4): 191-259. doi:  10.1016/j.pquantelec.2010.04.001
    [11] Wang Z, Yu R, Wang X, et al. Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect [J]. Advanced Materials, 2016, 28(32): 6880-6886. doi:  10.1002/adma.201600884
    [12] Dai W, Pan X, Chen S, et al. Honeycomb-like NiO/ZnO hetero-structured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance [J]. Journal of Materials Chemistry C, 2014, 2(23): 4606-4614. doi:  10.1039/c4tc00157e
    [13] Chen T P, Hung F Y, Chang S P, et al. Optoelectronic properties of thermally evaporated ZnO films with nanowalls on glass substrates [J]. Applied Physics Express, 2013, 6(4): 045201. doi:  10.7567/APEX.6.045201
    [14] Xu Q, Cheng Q, Zhong J, et al. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene lay-er [J]. Nanotechnology, 2014, 25(5): 055501. doi:  10.1088/0957-4484/25/5/055501
    [15] Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain [J]. Nano Letters, 2007, 7(4): 1003. doi:  10.1021/nl070111x
    [16] Wang Z, Zhan X, Wang Y, et al. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures [J]. Na-noscale, 2012, 4: 2678-2684.
    [17] Ghosh D, Kapri S, Bhattacharyya S. Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bond-ing [J]. ACS Applied Materials & Interfaces, 2016: acsami.6b13037.
  • [1] 吴茴, 彭嘉隆, 江金豹, 李晗升, 徐威, 郭楚才, 张检发, 朱志宏.  等离子体增强型ZnO基纳米线异质结阵列光电探测器 . 红外与激光工程, 2024, 53(3): 20240006-1-20240006-9. doi: 10.3788/IRLA20240006
    [2] 刘春阳, 盛羽杰, 佟金阳, 卢星桥, 于长明, 母一宁, 汪学文.  基于量子点和纳米线复合体系的低维柔性光发射器件 . 红外与激光工程, 2023, 52(10): 20230433-1-20230433-10. doi: 10.3788/IRLA20230433
    [3] Chang Qing, Tan Hengyu, Meng Tianming.  Nonlinear optics and ultrafast dynamics characteristics of CdTe/CdS quantum dots with different core sizes and shell thickness . 红外与激光工程, 2021, 50(2): 20200342-1-20200342-10. doi: 10.3788/IRLA20200342
    [4] Chang Qing, Meng Tianming, Tan Hengyu.  Preparation and fluorescence characteristics of CdTe/CdS and CdTe/ZnS core-shell semiconductor quantum dots . 红外与激光工程, 2021, 50(5): 20200287-1-20200287-7. doi: 10.3788/IRLA20200287
    [5] Fan Yu, Yuan Qianqian, Jiang Haitao.  Fabrication of low Mg content MgxZn1-xO nanowires ultraviolet photosensors via chemical vapour deposition method . 红外与激光工程, 2021, 50(9): 20200448-1-20200448-7. doi: 10.3788/IRLA20200448
    [6] Liu Zhi, Chen Jimin, Li Dongfang, Zhang Chenyu.  Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties . 红外与激光工程, 2020, 49(9): 20200298-1-20200298-5. doi: 10.3788/IRLA20200298
    [7] 赵太飞, 王秀峰, 王花, 余叙叙, 李永明.  弱湍流中紫外光非直视分集接收技术的研究 . 红外与激光工程, 2018, 47(12): 1222002-1222002(6). doi: 10.3788/IRLA201847.1222002
    [8] 李修, 徐艳芳, 辛智青, 李亚玲, 李路海.  表面等离子体共振增强ZnO/Ag薄膜发光特性研究 . 红外与激光工程, 2016, 45(6): 621005-0621005(4). doi: 10.3788/IRLA201645.0621005
    [9] 高娴, 贾慧民, 方铉, 刘鹤, 唐吉龙, 房丹, 王双鹏, 赵海峰, 李金华, 方芳, 楚学影, 王菲, 王晓华, 徐莉, 马晓辉, 魏志鹏.  ZnO/ZnFe2O4复合纳米粒子的制备及其特性研究 . 红外与激光工程, 2015, 44(7): 2110-2115.
    [10] 王新, 孙瑶, 李野, 端木庆铎.  ZnO薄膜在微光像增强器中的潜在应用 . 红外与激光工程, 2014, 43(1): 151-154.
    [11] 李涵, 孙红胜, 王加朋, 高书敏.  紫外天体模拟器辐射参数现场校准技术 . 红外与激光工程, 2014, 43(5): 1568-1573.
    [12] 陈应航, 隋左宁, 孙红胜, 魏建强, 李敬峰, 李世伟, 孙广尉.  紫外-真空紫外光谱辐照度校准系统 . 红外与激光工程, 2013, 42(4): 998-1002.
  • 加载中
图(6)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  100
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-04-30

Graphene quantum dots/ZnO nanowires composites for efficient ultraviolet sensing

doi: 10.3788/IRLA20200447
    作者简介:

    樊宇(1975−),女,副教授,硕士,主要从事智能控制方面的研究。

  • 中图分类号: TL814

摘要: 传统的氧化锌紫外探测器存在光电流小的问题,由于石墨烯具有较高的载流子迁移率,文中采用一种简便的旋涂退火的方法,使得石墨烯量子点在氧化锌纳米线表面复合。利用石墨烯量子点修饰氧化锌纳米线的表面后,制备的氧化锌基紫外光电探测器在5 V偏置电压条件下,在波长为365 nm、功率为1.35 mW/cm2的紫外光照射下,光电流从9.5 μA增加到65 μA,光电流增大了6.8倍,光电流明显提高。这种简单的旋涂退火方法,在有效降低紫外光电探测器加工工艺的同时,提高了探测器的性能,将为下一代可持续绿色发展策略,设计高效率低成本的光电设备提供有益的参考。

English Abstract

    • ZnO is a promising candidate for UV photodetector applications due to its unique optical and electrical properties including direct wide band gap (3.37 eV), large exciton binding energy (60 meV) and strong resistance to high energy proton irradiation [1-5].Various ZnO nanomaterials have been used for fabrication of ultraviolet (UV) photodetector with high photoconductive gain and high responsivity [68]. However, these UV photodetectors suffered poor transient response (with response time up to minutes), which is attributed to surface defects and oxygen adsorption/desorption process of ZnO nanomaterials. Therefore, it is highly desirable to improve the transient response of ZnO nanomaterial for fast UV sensing.

      By now, different methods have been developed to improve the transient response of ZnO based UV photodetectors, which include hydrogen doping, oxygen plasma treating, deposition of carbon nanotube network, and graphene shell coating [913]. Among all of them, the combination of graphene with ZnO is one of the most promising methods, as it can effectively improve the carrier transport and collection efficiency of ZnO based UV photodetectors, leading to a high responsivity and fast transient response [14-15].

      In this work, we report a facile preparation method of the GQDs-ZnO nanowires UV photodetector for the first time by a simple spin-coating technique and low temperature vacuum annealing treatment method. GQDs-ZnO composites was synthesized using the Chemical Vapour Deposition (CVD) method for UV photodetector applications. By using the CVD method, the GQDs-ZnO composites achieved very high active surface to volume ratio, which is preferable for photocurrent generation. In addition, the high carrier mobility of graphene enabled efficient carrier transport and collection in the composite, leading to a high performance of this UV photodetector in terms of speed and photoresponsivity.

      The attractiveness of this work lies in the simplicity of the treatment process, which could easily be scaled up, and paves the way for mass production of low-cost nanoscale UV photodetector. In addition, the fabricated device demonstrated a improved photocurrent under UV illumination in air at room temperature. This work represents a simple, clean, and efficient route to fabricate UV photodetector.

    • The fabrication of ZnO NWs. ZnO nanowires was grown on the SiO2/Si substrate in a horizontal tube furnace by chemical vapor deposition method. This system contains a quartz tube vacuum chamber 100 cm long and 10 cm in diameter. A mixture of the Zinc oxide powder (99.99%) and commercial nanodiamond powder (weight ratio 3∶1) were the precursor material. Before the quartz coat was inserted into the center of the quartz tube vacuum chamber, the precursor material was put into the coat and covered by the SiO2/Si substrate (1×1 cm2). And then, the precursor material were heated up to 960 °C with the high purity Ar gas (100 sccm) as the transfer gas. When the temperature was heated to the designed temperature, the high purity O2 gas (2 sccm) was introduced into the quartz tube and kept a fixed pressure (30 KPa) for 30 minutes. Finally, the ZnO sample could be obtained on the substrates after the chamber cooled down to the room temperature.

      The fabrication of GQDs-ZnO Device. The GQDs modified ZnO nanowires were prepared using a spin-coating method. A few droplets of the GQDs solution (25 nm, Adrich-sigma) were deposited on the surface of ZnO nanowires with a rate of 1000 rpm for 20 s. And then, the substrate was heated at 140 ℃ for 15 mins to allow solvent evaporation. After that, the substrate was annealed at 500 ℃ for 20 mins in the vacuum quartz tube and then dispersed the substrate into ethanol with the help of ultrasound. Then, a droplet of the ZnO NW suspension is dropped over the interdigital microelectrodes of Au with digital spacing of 10 um, and then dried at 140 ℃ for 30 mins to vaporize the solvent, as shown in Fig. 1.

      Figure 1.  Fabrication process of ZnO-GQDs device

    • SEM was used to characterize the morphology of the products. Fig. 2 shows the SEM of the as-grown ZnO NWs and the GQDs-ZnO NWs. Fig. 2(a) and (b) show the top-view SEM images of the as-grown ZnO NWs and high-resolution images of the samples, respectively. From Fig. 2(b), we can find that the ZnO nanowires is the classical wurtzite sructure, and the diameter of ZnO nanowire is approximately 150 nm. Fig. 2(c) and Fig. 2(d) show the top-view SEM images of the GQDs-ZnO NWs and high-resolution images of the samples, respectively. From Fig. 2(d), we can find that the surface of ZnO nanowire is coated by the GQDs.

      Figure 2.  (a) Top-view SEM images of the as-grown ZnO NWs; (b) High resolution of ZnO NWs; (c) Top-view SEM images of the GQDs-ZnO NWs; (d) High resolution of GQDs-ZnO NWs

      Figure 3 shows the transmission electron microscopy (TEM) of ZnO and GQDs-ZnO. The red circle in Fig. 3(a) and (c) are the observation regions of ZnO and GQDs-ZnO under transmission electron microscopy (TEM), respectively. Careful TEM observation of the GQDs-ZnO reveals that the interface of GQDs/ZnO nanowires has a great difference in Fig. 3(b) and (d), respectively. From Fig. 3(d), the broken regions in the surface of ZnO nanowire could be attributed to the GQDs reacted with ZnO nanowire under the vacuum environment.

      Figure 3.  TEM of ZnO NWs and ZnO-GQDs NWs: (a) the single ZnO NW sample for TEM; (b) the observation regions of ZnO NW in red circle; (c) the single ZnO-GQDs NW sample for TEM; (d) the observation regions of ZnO-GQDs NW in red circle

      In order to characterize the GQDs diamerter, the GQDs’s TEM was made, as shown in Fig. 4. From Fig. 4(b), the most GQD’s diameter is 20 nm, and a few is 60 nm, and the rest size is very little.

      Figure 4.  GQDs’s diameter characterization. (a) the TEM of GQD; (b) the figure of diameter distribution statistics

      The photoresponse measurements of the device were carried out at ambient conditions with UV illumination (365 nm, 1.35 mW/cm2). The photoresponse behaviors of the ZnO NWs and GQD-ZnO NWs are shown in Fig. 5. Fig. 5(a) and (b) show the I-V cure of ZnO NWs and ZnO-GQDs, respectively. Fig. 5(c) and (d) show the I-T curves of ZnO NWs and ZnO-GQDs NWs, respectively. From Fig. 5, the photocurrent of ZnO-GQDs is larger than that of ZnO NWs. The increased photocurrent was a consequence of GQDs decorated the ZnO NWs surface, which led to an enhanced photocurrent.

      Figure 5.  I-V characteristics of the ZnO NWs photodetectors (a) and ZnO-GQDs NWs photodetectors (b); I-T characteristics of the ZnO NWs photodetectors (c) and ZnO-GQDs NWs photodetectors (d)

      According to an established mechanism[16], the electronic are captured by the adsorbed oxygen on the n-type ZnO nanowires surface, and under UV light illumination, the photogenerated holes are trapped, photodesorbing the adsorbed oxygen according to the consecutive steps: O2(g) + e → O2 (ad) and h+ + O2 (ad) → O2(g) (as shown in Fig. 6(a)-(b)).

      Figure 6.  Photoresponse mechanism of the ZnO-NWs (a)–(b) and ZnO-G QDs (c). The oxygen plasma treatment improves the oxygen CB and VB are the conduction and valence bands, respectively

      In ZnO-GQDs composites electron−hole pairs are generated in both ZnO nanowires and GQDs[17]. The holes migrate to the surface which facilitates the photodesorption process of adsorbed oxygen ions. The unpaired electrons, left behind after migration of photogenerated holes, enhance the free carrier concentration in the ZnO-GQDs composites and increase the photocurrent.

      As a result post decoration of the ZnO nanowires with GQDs, the photocurrent increase compared to pristine ZnO nanowires.The mechanism can be explained by the schematic model in Fig. 6(c). Electron transfer occurs from the lowest unoccupied molecular orbital (LUMO) of GQD to the conduction band of ZnO, whereas the holes are involved to release the adsorbed oxygen.

    • In summary, we demonstrated the fabrication of a highly efficient UV photodetector consisting of GQD decorated ZnO nanowires displaying an enhanced photocurrent. The reason is that electron−hole pairs in ZnO-GQDs composites are generated in both ZnO nanowires and GQDs. The holes migrate to the surface which facilitates the photodesorption process of adsorbed oxygen ions. The unpaired electrons, left behind after migration of photogenerated holes, enhance the free carrier concentration in the ZnO-GQDs composites and increase the photocurrent. This approach deliver a new direction to adapt green strategies for designing next-generation optoelectronic devices with high efficiency yet low cost.

参考文献 (17)

目录

    /

    返回文章
    返回